
(19) United
INI

US 20200073859A1

States
(12) Patent Application Publication (10) Pub . No .: US 2020/0073859 A1

Ellis et al . (43) Pub . Date : Mar. 5 , 2020

(54) DATA STORAGE METHOD AND SYSTEM

(71) Applicant : Palantir Technologies Inc. , Palo Alto ,
CA (US)

G06F 16/28 (2006.01)
G06F 16/18 (2006.01)

(52) U.S. CI .
CPC G06F 16/212 (2019.01) ; G06F 16/2282

(2019.01) ; G06F 16/1865 (2019.01) ; G06F
16/289 (2019.01) ; G06F 16/2228 (2019.01) (72) Inventors : Joseph Ellis , London (GB) ; Jakub

Kozlowski , London (GB) ; James
Baker , London (GB) ; Mark Elliot ,
London (GB)

(57) ABSTRACT

(21) Appl . No .: 16 / 249,740

(22) Filed : Jan. 16 , 2019

(30) Foreign Application Priority Data

Example embodiments describe a data storage method and
system . For example , the method described , performed by
one or more processors , may comprise in an application for
enforcing one or more policies for reading and writing data
to a database receiving , over a data network , instructions for
performing a read or write request for data , and sending the
read or write request to a transaction manager for providing
transactions for a key - value store of the database , the request
being in accordance with one or more policies to be enforced
by the enforcing application . The method may also comprise
receiving , from the transaction manager , a response message
based on operations performed by the transaction manager
in response to the read or write request .

Aug. 28 , 2018 (GB) 1813951.9

Publication Classification

(51) Int . CI .
G06F 16/21
G06F 16/22

(2006.01)
(2006.01)

114
DISPLAY 100
GUI
116

110

122-1
CLIENT
112

APP
122-3 NETWORK

120

UPDATING
SYSTEM

122-2

ENF . 170
APP SECONDARY

STORAGE
125 TRANSACTION

MANAGER 145
130 " 135

143

SERVER 142-1 SERVER 142-2 SERVER 142-3

Database
140-1

Database
140-2

Database
140-3

114
DISPLAY 116

110

Patent Application Publication

122-1

CLIENT 112

APP

APP

122-3

NETWORK 120

UPDATING SYSTEM

122-2

170

ENF , APP

SECONDARY STORAGE
125

TRANSACTION MANAGER

145

130

Mar. 5 , 2020 Sheet 1 of 6

135

K - V

143

SERVER 142-1

SERVER 142-2

SERVER 142-3

Database 140-1

Database 140-2

Database 140-3

US 2020/0073859 A1

FIG . 1

Patent Application Publication

API

150

REQUEST PARSER 152

160

ENFORCER
154

125

162

REQUEST SENDER 156

Mar. 5 , 2020 Sheet 2 of 6

DATA RECEIVER

158

FIG . 2

US 2020/0073859 A1

401

301

Patent Application Publication

RECEIVE A DATABASE READ / WRITE INSTRUCTION

RECEIVE A DATABASE READ / WRITE INSTRUCTION
402

302

DOES WRITE INSTRUCTION CONFORM TO SCHEMA ?

SEND READ / WRITE INSTRUCTION TO A TRANSACTION MANAGER FOR PROVIDING TRANSACTIONS FOR A KEY
VALUE STORE OF A DATABASE IN ACCORDANCE WITH ONE OR MORE POLICIES

403

Y

N

SEND WRITE MESSAGE & FILE
TO TRANSACTION MANAGER

SEND ERROR MESSAGE

Mar. 5 , 2020 Sheet 3 of 6

303

404

405

RECEIVING , FROM THE TRANSACTION MANAGER , A RESPONSE MESSAGE BASED ON OPERATIONS PERFORMED BY IN RESPONSE TO THE READ / WRITE REQUEST

RECEIVE FROM TRANSACTION MANAGER CONFIRMATION OF READ / WRITE AND / OR KEY OF KEY - VALUE STORE

FIG . 4

FIG . 3

US 2020/0073859 A1

WWWWWWW

601

RECEIVE A DATABASE WRITE INSTRUCTION

RECEIVE A DATABASE READ INSTRUCTION

501

602

Patent Application Publication

IS FILE TO BE WRITTEN BELOW
THRESHOLD SIZE ?

502

SEND READ INSTRUCTION & KEY TO TRANSACTION MANAGER

503

505

Y

N

603

WRITE FILE TO SECONDARY MEMORY

SEND WRITE MESSAGE & FILE TO TRANSACTION MANAGER

RECEIVE FROM TRANSACTION MANAGER VALUE ASSOCIATED WITH KEY

604

CANADA

SEND WRITE INSTRUCTION & LOCATION OF FILE IN SECONDARY MEMORY TO TRANSACTION MANAGER

IS VALUE A LOCATION IN SECONDARY
MEMORY ?

RECEIVE FROM TRANSACTION MANAGER CONFIRMATION OF WRITE AND / OR KEY OF KEY - VALUE STORE

Mar. 5 , 2020 Sheet 4 of 6

605

JY

506

RECEIVE DATA FROM LOCATION IN SECONDARY MEMORY

606

504

FIG . 5

FIG . 6

RECEIVE FROM TRANSACTION MANAGER CONFIRMATION OF WRITE AND / OR KEY OF KEY - VALUE STORE

US 2020/0073859 A1

143

620

622

Patent Application Publication

KEY

VALUE

KEY (RANGE)

PREDICTOR

K1

8198987

ENF , APP

K2

386086060

125

K3

12099901

K4

21993331

Mar. 5 , 2020 Sheet 5 of 6

K5

8987981

K999

7802021

0001X

0912901

US 2020/0073859 A1

FIG . 7

Patent Application Publication Mar. 5 , 2020 Sheet 6 of 6 US 2020/0073859 A1

8ZL

97L
200A 722 724

OEZ

OZZ

700
710

ZOL
718

708 FIG . 8

706

716
ZIZ IL

US 2020/0073859 Al Mar. 5 , 2020
1

DATA STORAGE METHOD AND SYSTEM

TECHNICAL FIELD

[0001] Example embodiments relate to methods and sys
tems for data storage .

BACKGROUND

[0002] A database is an organized collection of data which
is stored and may be accessed electronically . Databases are
used in virtually every commercial sector to store , organise
and manage data relating to , for example , technical pro
cesses , data analysis and transformation processes , financial
transactions and inventory management , to give a very
limited number of examples .
[0003] Databases may be classified based on how they
store data and / or how they are managed . Example classifi
cations which are well - known are relational databases and
non - relational (e.g. NoSQL) databases . Non - relational data
bases tend to be the preferred class where scalability and
distribution of database storage nodes on multiple computer
systems is needed . Such scalability and provision of distrib
uted storage are factors that many modern database users
require , particularly where databases hold large amounts of
data which increase over time .
[0004] Another feature that modern database users require
is transactional functionality . A transactional database is one
that has the capability to roll - back or undo a requested
database transaction if it is not completed correctly . How
ever , the provision of a database and associated management
system that is both scalable , distributed and handles trans
actions is not easy to implement and may present other
difficulties in terms of managing data that may lead to poor
performance in terms of speed and memory usage .

sending the write request and the first file to the transaction
manager for storing the first file as a value in the key - value
store .

[0010] One or more of the policy data objects may define
a predetermined file size , and wherein if the instructions are
associated with writing a second file that is over said
predetermined file size , the method further comprises stor
ing the second file in secondary memory and sending the
write request comprises sending the write request and the
location of the second file in the secondary memory to the
transaction manager for storing the location as a value in the
key - value store .
[0011] Receiving the response message may comprise
receiving from the transaction manager a key corresponding
to the value in the key - value store .
[0012] If a subsequent received instruction is associated
with reading the second file , a further , subsequent step may
comprise sending a read request to the transaction manager ,
the read request including the key of the second file ,
receiving from the transaction manager the location of the
second file corresponding to the key , and retrieving the
second file from the secondary memory using said location .
[0013] The instructions may be received from one or more
other applications of the data network , the other applications
being at least partly configured to read and / or write data to
the database via the transaction manager and key - value
store , and wherein the method further comprises receiving
one or more updated policies to be enforced by the enforcing
application when receiving instructions from the one or
more other applications .
[0014] The method may further comprise storing a range
scan table for caching an index associated with a subset of
the keys in the key - value store .
[0015] The subset of keys may comprise common key
parts .

[0016] The subset of keys may be determined based on
prior range - scan requests .
[0017] A second aspect provides a computer program ,
optionally stored on a computable - readable medium , com
prising instructions which when executed by a computer
cause the computer to carry out a method in an application
for enforcing one or more policies for reading and writing
data to a database : receiving , over a data network , instruc
tions for performing a read or write request for data ; sending
the read or write request to a transaction manager for
providing transactions for a key - value store of the database ,
the request being in accordance with one or more policies to
be enforced by the enforcing application ; and receiving ,
from the transaction manager , a response message based on
operations performed by the transaction manager in
response to the read or write request . The second aspect may
also provide a method according to any preceding method
definition .

[0018] Athird aspect provides a data processing apparatus
configured to carry out a method according to any preceding
method definition , the apparatus comprising one or more
processors or special - purpose computing hardware .
[0019] A fourth aspect provides a data processing system
configured to carry out the method of any preceding defi
nition .

SUMMARY

[0005] According to a first aspect , there is provided a
method , performed by one or more processors , the method
comprising : in an application for enforcing one or more
policies for reading and writing data to a database : receiving ,
over a data network , instructions for performing a read or
write request for data ; sending the read or write request to a
transaction manager for providing transactions for a key
value store of the database , the request being in accordance
with one or more policies to be enforced by the enforcing
application ; and receiving , from the transaction manager , a
response message based on operations performed by the
transaction manager in response to the read or write request .
[0006] The enforcing application may access one or more
policy data objects defining the policies to be enforced .
[0007] One or more of the policy data objects may define
one or more schemas to which the instructions should
conform in order for the read or write request to be sent , and
wherein sending occurs only if the instructions conform .
[0008] An error message may be returned to a computer
system associated with the instructions if the instructions do
not conform to the one or more schemas in the one or more
policy data objects .
[0009] One or more of the policy data objects may define
a predetermined file size , and wherein if the instructions are
associated with writing a first file that is under said prede
termined file size , sending the write request comprises

US 2020/0073859 Al Mar. 5 , 2020
2

BRIEF DESCRIPTION OF DRAWINGS

[0020] Example embodiments will now be described , by
way of non - limiting example , with reference to the accom
panying drawings .
[0021] FIG . 1 is a block diagram of a computer network
incorporating a computer system for operating according to
an example embodiment ;
[0022] FIG . 2 is a schematic block diagram of an Appli
cation Programming Interface of a computer system accord
ing to an example embodiment ;
[0023] FIG . 3 is a flow diagram indicating processing
operations of an example embodiment in response to receiv
ing a database instruction ;
[0024] FIG . 4 is a flow diagram indicating processing
operations of another example embodiment in response to
receiving a database instruction ;
[0025] FIG . 5 is a flow diagram indicating processing
operations of an example embodiment in response to receiv
ing a database write instruction ;
[0026] FIG . 6 is a flow diagram indicating processing
operations of another example embodiment in response to
receiving a database read instruction ;
[0027] FIG . 7 is a schematic diagram of a key - value pair
table and range - scan cache , for use in another example
embodiment ; and
[0028] FIG . 8 is block diagram of a computing device that
may be employed in the example embodiments .

their relational database counterparts , and tend to use far less
memory to store the database , offering performance gains
for certain workloads .
[0033] Example embodiments may provide a database
management method and system that interacts with the
key - value database via a transactional layer , being a hard
ware and / or software module that provides transactions ,
supporting the rolling - back or undoing of transactions if not
completed appropriately .
[0034] Example embodiments may provide a database
management method and system in the form of an applica
tion , which may be a microservice , that is , a lightweight
application having a particular database - related function .
Such an application may interact with other applications to
provide overall functionality . For example , in an embodi
ment , a network of applications may be provided on a
network for performing respective dedicated functions or
groups of functions for clients using a database . For
example , one such application may be dedicated to authen
tication and authorisation , to determine if a user is an
authentic user for the purposes of using other applications
and / or accessing the database , and authorised to access
particular files or groups of files referred to in a query .
Another such application may be a data integration service
that provides sourcing , fusing and transforming of data into
a required format . Another such application may be a
version control service . Numerous other examples may be
imagined
[0035] In general , an application may be considered an
application dedicated to a particular service or services
associated with database data , and users may utilise said
applications via a client and network to interact with the
database data , either directly or via the network applications ,
in a flexible and useful way .

DETAILED DESCRIPTION

[0029] Example embodiments will be described for car
rying out the subject matter of the present disclosure . In the
following description , specific details are set forth in order
to provide a thorough understanding of the subject matter . It
shall be appreciated that embodiments may be practiced
without some or all of these specific details .
(0030) Example embodiments relate to methods and sys
tems for data storage , particularly in the context of data
bases . In this context , a database is any organized collection
of data which is stored and may be accessed electronically .
This accessing may be achieved by means of a computer
instruction comprising for example a query derived from a
client which may relate to one or more of reading , writing ,
transforming or managing data .
[0031] Example embodiments particularly relate to data
base management , whereby methods and systems control
how such queries are processed as above in an efficient
manner . Example embodiments of this database manage
ment relate to a scalable , transactional database architecture
which may be implemented on one or more computer
systems , i.e. using a distributed model . However , other
embodiments are not limited to this form of database model .
[0032] Example embodiments may provide a database
management method and system that interacts with a key
value database which employs key - value pairs acting as a
form of dictionary or hash table . The database values may
comprise one or more files , objects or records (hereafter
“ files ”) which are stored in a location on a memory of the
database , and each value is paired with a key usable to
retrieve or transform the value , which key can be referred to
in the query to access the respective value . As is known ,
key - value pair databases are more flexible and scalable than

Example Computer System
[0036] FIG . 1 illustrates an example of a computer system
100 configured to perform method and systems described
herein . As shown , the computer system 100 includes a client
computing device 112 used by a human user 110 , a server
130 and one or more memory devices that may provide
individual databases 140-1 , 140-2 , 140-3 or a distributed
database . The client computing device 112 and the server
130 may be configured to communicate with one another via
a network 120. The network 120 may include the Internet ,
an intranet , a local area network , a wide area network , a
wired network , a wireless network , and a virtual private
network (VPN) . For ease of understanding , various compo
nents of the system have each been described with reference
to one or more computing devices . It should be noted that ,
in same embodiments , any number of these components
may be collocated on the same computing device .
[0037] The client computing device 112 may for instance
be a laptop computer , a desktop computer , a mobile phone ,
a personal digital assistant (PDA) , a tablet computer , a
netbook , a television with one or more processors , embed
ded therein or coupled thereto , a physical machine or a
virtual machine . The client computing device 112 may
include one or more of a keyboard , a mouse , a display 114 ,
or a touch screen (of which display 114 may be a part of) .
For example , the client computing device 112 may be
composed of hardware components like those of a basic
computing device 500 described below with respect to FIG .
8. The client computing device 112 may also include a web

US 2020/0073859 Al Mar. 5 , 2020
3

browser or a client application configured to display , in a
graphical user interface 116 of the client computing device
112 , a computer program for accessing data . It may also
allow the user to specify other operations that should be
performed by the server 130. The graphical user interface
116 may be a web browser window , a client application
window , an operating system window , an integrated devel
opment environment window , a virtual terminal window or
other computer graphical user interface window . While only
one user 110 and one client computing device 112 are
illustrated in FIG . 1 , the subject innovations may be imple
mented in conjunction with one or more users 110 and one
or more client computing devices 112 .
[0038] The server 130 may be implemented as a single
server computing device or as multiple server computing
devices arranged in a distributed or clustered computing
arrangement . Each such server computing device may be
composed of hardware components like those of basic
computing device 500 described below with respect to FIG .
7. The server 130 includes a transaction manager 135 which
may be an application , script or other executable file the
operation of which will be described later on . In some
embodiments , other software modules may be provided on
the server 130 .
[0039] The server 130 may include one or more processors
(e.g. CPUs) , a network interface , and memory . The proces
sor (s) may be configured to execute computer instructions
that are stored in one or more computer - readable media , for
example , the memory of the server 130. The server 130 may
include a network interface that is configured to allow the
server 130 to transmit and receive data in a network , e.g. ,
network 120 of FIG . 1. The network interface may include
one or more network interface cards (NICs) . The memory of
the server 130 may store data or instructions . The instruc
tions stored in the memory may include the transaction
manager 135 .
[0040] One or more applications 122-1 , 122-2 , 122-3 , 125
may be connected to the network 120 for performing one or
more functions associated with data in the databases 140-1 ,
140-2 , 140-3 . The one or more applications 122-1 , 122-2 ,
122-3 , 125 may be microservices , or similar applications
dedicated to a particular service or services associated with
database data , and users may utilise said applications via a
client and network to interact with the database data in a
flexible and useful way .
[0041] For example , a first application 122-1 may be
configured for performing user authentication and authori
sation . A second application 122-2 may be configured for
performing data integration for one or more of sourcing ,
fusing and transforming data in the one or more databases
140-1 , 140-2 , 140-3 into a required format . A third appli
cation 122-3 may be configured for performing a further
database - related task . The user 110 wishing to perform some
task or query on data in the one or more databases 140-1 ,
140-2 , 140-3 may utilise the first to third applications 122-1 ,
122-2 , 122-3 . This use may be restricted to particular users ,
for example by initially requiring tasks or queries to use the
first application 122-1 for user authentication and authori
zation , prior to enabling use of the other applications 122-2 ,
122-3 .
[0042] A further , fourth application 125 is configured to
provide a centralized management and / or control service . It
is hereafter referred to as an enforcement application 125 , as
its role may be to enforce certain conditions , such as

schemas and / or the size of files that may be written to the
databases 140-1 , 140-2 , 140-3 . Functions associated there
with will be described later on .

[0043] The transaction manager 134 is configured to man
age transactions . As will be explained , the transaction man
ager 134 and the enforcement application 125 may be part
of the same application , the latter application ensuring that
requests or transactions conform to one or more predeter
mined policies prior to allowing interaction with the trans
action manager 134 or the one or more underlying databases
140-1 , 140-2 , 140-3 . A transaction is a unit of work , i.e. one
or more of an update , read , deletion , transformation and
write operation , to be performed by a data management
system in response to user requests . The data contained in a
transaction may correspond to a portion of a data object , a
single data object or a plurality of data objects . For example ,
the data management system may be a system comprising
the server 130 and the one or more databases 140-1 , 140-2 ,
140-3 . While the one or more individual databases 140-1 ,
140-2 , 140-3 can provide transactions , using the transaction
manager 134 enables transactions to be implemented across
a distributed database system which is provided over plural
machines or locations .

[0044] Transactions enable roll - back , or recovery or undo
ing , from failures by ensuring that the data management
system is kept consistent when failures occur . Transactions
also ensure the data management system is kept consistent
when multiple programs attempt to access the data manage
ment system simultaneously . This is achieved by four prop
erties of transactions known as ACID : Atomicity , Consis
tency , Isolation and Durability .
[0045] Atomicity refers to transactions being " all - or - noth
ing ” , or atomic , meaning that a transaction either completely
succeeds or fails . If a transaction succeeds , all operations
included in the transaction are completed . If a transaction
fails , no visible change is made to the data management
system , so it appears to external systems , such as the client
112 , accessing the system after the transaction has failed that
no operation has been attempted . Transaction failure may
occur for a number of reasons , e.g. power failure , faulty code
or application failure .
[0046] Consistency refers to (successful) transactions only
changing data stored by the data management system in
allowed ways . The allowed ways that the database can
change may be constrained by any number of primary key
constraints , data type constraints , foreign key constraints ,
unique constraints and assertion statements . If a transaction
results in a state that violates any of these constraints , the
transaction is not successful and results in a transaction
failure , so it is as if no operation has been attempted .
[0047] Isolation refers to work taking place inside a trans
action being invisible to other operations , i.e. other trans
actions , running concurrently . This property ensures data is
only seen in a consistent state , i.e. before or after a trans
action has completed . Without isolation , data read by a
second transaction while a first transaction was underway
would be incorrect . For example , the first transaction may
represent a bank transfer and so increment one bank balance
then decrement another bank balance . If a second transaction
was able to read these bank balances half - way through the
first transaction , the first bank balance would be incremented
but the second bank balance would not yet be decremented .

US 2020/0073859 A1 Mar. 5 , 2020
4

It would , therefore , appear to the second transaction that
money had appeared from nowhere . Isolation prevents these
scenarios from occurring .
[0048] Durability refers to all successful transactions
being permanently stored , i.e. stored in non - volatile
memory , e.g. to a hard disk drive or solid state drive . The
transaction is not considered successful until this has
occurred , and if this is prevented from occurring , e.g. by a
disk failure , the transaction is deemed to have failed , and no
visible change is made to the data management system .
[0049] Each of the one or more databases 140-1 , 140-2 ,
140-3 may include one or more processors (e.g. , CPUs) , a
network interface , and memory . The processor (s) may be
configured to execute computer instructions that are stored
in one or more computer - readable media , for example , a
memory of each database . The databases 140-1 , 140-2 ,
140-3 may each include a network interface configured to
allow each database 140-1 , 140-2 , 140-3 to transmit and
receive data in one or more networks , e.g. , a network
connecting the server 130 and the databases , which may be
the same or different network as the network that connects
the server 130 and the client 112. The network interface may
include one or more network interface cards (NICs) . The
memory of each database 140-1 , 140-2 , 140-3 may store
data or instructions . The instructions stored in each memory
may include a database server module 142-1 , 142-2 , 142-3 .
While three databases 140-1 , 140-2 , 140-3 are shown , any
number of databases and database server modules may be
used 142-1 , 142-2 , 142-3 .
[0050] The database servers 142-1 , 142-2 , 142-3 may be
any database serving application capable of providing reli
able storage . In many embodiments , the database servers
142-1 , 142-2 , 142-3 are the same database serving applica
tion , but this is not essential provided all can be accessed and
managed by the transaction manager 135. One or more of
the database servers 142-1 , 142-2 , 142-3 may be a key - value
store 143 , such as CassandraDB , Oracle NoSQL or
LevelDB . One or more of the database servers 142-1 , 142-2 ,
142-3 may be a document - oriented database , such as Mon
goDB or CouchDB . One or more of the database servers 142
may be a Structured Query Language (SQL) database such
as Oracle® database , MySQL database , PostgreSQL data
base or Microsoft® SQL server .
[0051] In many embodiments , the database servers 142-1 ,
142-2 , 142-3 are distributed database serving applications ,
e.g. CassandraDB or MongoDB . This is not as essential as
distributed data management may be provided by the trans
action manger 135. However , using a distributed database
serving application enables fault tolerance and / or horizontal
scalability , and the transaction manager 135 need only
provide the distributed transaction functionality .
[0052] Referring to FIG . 2 , the enforcement application
125 comprises in Application Programming Interface (API)
150 , which includes a request parser 152 , an enforcer 154 ,
a request sender 156 , and a data receiver 158. Each of these
modules , 150 , 152 , 154 , 156 , 158 may be implemented in
software and may be combined into a single module . A
greater or fewer number of modules may be provided .
[0053] In overview , the enforcement application 125 is an
application that enforces certain policies via the API 150 to
ensure that , for example , one or more predefined schemas
and / or operations are conformed with and / or one or more
file size writes are handled appropriately . The enforcement
application 125 may enforce one or more predefined sche

mas and / or operations that is or are known to be performant
in terms of , for example , reducing the processing burden
(and developers ' burden) when modelling application data
and / or in providing predictable and consistent results . For
example , for range scan requests with respect to key - value
pairs in a database , a schema which appears to use compu
tational resources efficiently may not actually work well as
the number key / value pairs in the database increases , and
hence system performance degrades . Hence , it may be
appropriate to enforce schemas and / or operations that is or
are known to work for range scans for small or large
numbers of key / value pairs .
[0054] In other words , instructions from the client com
puting device 112 and or from one or more of the applica
tions 122-1 , 122-2 , 122-3 may have to conform with certain
policies set - out in the enforcement application 125 in order
to interact with data in the one or more databases 142-1 ,
142-2 , 142-3 . For example , the request parser 152 may be
associated with a first policy database 160 and the enforcer
154 may be associated with a second policy database 162 .
The first and second policy databases 162 may comprise
memory of any suitable form and the policies within them
may be provided in any suitable data format , for example as
scripts , code , or logic defining preconditions or rules . These
may be termed policy objects .
[0055] The API 150 provides a set of functions and
procedures that enable clearly defined methods of commu
nication between client computers , such as the client com
puting device 112 , and the one or more databases 142-1 ,
142-2 , 142-3 . Thus , the API 150 may expose an interface to
the user 110 that provides visual feedback as to whether their
instructions to the one or more databases 142-1 , 142-2 ,
142-3 are suitable . If not , for example , an error message may
be returned and the instruction will not be executed .
[0056] One functional module of the API 150 is the
request parser 152 , which parses instructions received from
the client computing device 112 to convert the instruction
from a received format to a further format readable by the
enforcer 154. Updates to the request parser 152 may be
received from an updating means , such as a computer
terminal associated with an administrator or other authorized
entity associated with the enforcement application 125 and /
or the one or more databases 140-1 , 140-2 , 140-3 . Updates
may be policy updates which are stored in the first policy
database 160. Updates may be in the form of modified or
replacement policy objects .
[0057] The enforcer 154 is configured to enforce other
policies which are stored in the second policy database 162 ,
which may be in the form of policy objects . For example , the
enforcer 154 may enforce one or more schemas . A schema
in this context means a database schema , which describes in
a formal language its structure or organization as supported
by the transaction manager 135 and / or the database servers
142-1 , 142-2 , 142-3 . If a received instruction does not
conform to the one or more schemas , an error message may
be returned and the instruction may not be executed .
Updates to a schema policy in the second policy database
162 may be received from an updating means , such as a
computer terminal associated with an administrator or other
authorized entity associated with the enforcement applica
tion 125 and / or the one or more databases 140-1 , 140-2 ,
140-3 . As another example , the enforcer 154 may enforce
where data is stored based on the size of the data , e.g. a data
file , array or other object . For example , if the received

US 2020/0073859 Al Mar. 5 , 2020
5

instruction requests the writing of a file above a predeter
mined size to one of the databases 140-1 , 140-2 , 140-3 , then
the enforcer 154 may be configured to write the file in a
memory that is outside of the said database , i.e. in secondary
storage 145 , thereby to avoid the transaction manager 135
being overloaded with large amounts of data . In this respect ,
when handling large numbers of instructions for potentially
large numbers of users , the transaction manager 135 may
become a bottleneck in terms of data flow , slowing the
processing of instructions down considerably for other
users . Therefore , use of the secondary storage 145 may
involve writing the location of the data in the secondary
storage 145 as the value in the key - value store 143 provided
by the one or more database servers 142-1 , 142-2 , 142-3 . In
this way , the key of the key - value store 143 may still refer
to , and enable retrieval of , larger data files stored in the
secondary storage 145 , but without taking up valuable
resources of the transaction manager 135. The secondary
storage 145 may be any form of memory , and is accessed by
the enforcer application 125 rather than via the transaction
manager 135. The secondary storage 145 may be referred to
as blob storage and may be located , for example , in the cloud
or elsewhere . The predetermined file size may be stored in
the second policy database 162 as a file size policy object .
File sizes below said predetermined size may be stored in the
one or more database servers 142-1 , 142-2 , 142-3 . Updates
to the file size policy object in the second policy database
162 may be received from an updating means , such as a
computer terminal associated with an administrator or other
authorized entity associated with the enforcement applica
tion 125 and / or the one or more databases 140-1 , 140-2 ,
140-3 . Updates may be in the form of updates or replace
ment policy objects .
[0058] The request sender 156 is configured to send
requests to other parts of the FIG . 1 system . The data
receiver 158 is configured to receive data from other parts of
the FIG . 1 system .
[0059] In operation , the enforcement application 125 is
configured to receive instructions for data storage (writes , or
puts) and / or retrieval (reads , or gets) from the client com
puting device 112 , or from one or more of the other
applications 122-1 , 122-2 , 122-3 , and to forward these
instructions to the transaction manager 135 , provided they
can be parsed and meet whatever rules are being enforced by
the enforcer 154 .
[0060] In this respect , it will be appreciated that forward
ing instructions may involve some transforming of the
instructions from one format to another , due to the function
of the API 150 and particularly the request parser 152. For
ease of explanation , however , we refer to forwarding on the
basis that the same read or write request (in whatever
format) is being passed on .
[0061] The enforcement application 125 receives the
instructions from the client computing device 112 using any
suitable mechanism , e.g. a remote procedure call (RPC) , a
Representational State Transfer (REST) service call or a
message queue event . These received instructions contain
details of the data to be stored , deleted , updated and / or
retrieved . In the case of data storage and updating , the data
to be stored or updated is either included in the instruction
or retrieved by the enforcement application 125 in a subse
quent operation . The enforcement application 125 may
transform the instructions and included or retrieved data in
to a format understandable by the transaction manager 135 ,

and then communicates the transformed instructions and
data to the transaction manager using any suitable mecha
nism . For example , the enforcement application 125 com
municates the transformed instructions and data via a func
tion call , a remote procedure call (RPC) , a REST service
call , a message queue , or inter - process communication
(IPC) . On completion of the instruction , if data is returned ,
i.e. in the case of a data retrieval operation , the data may be
returned by any of these same mechanisms .
[0062] As will be appreciated from the above , by provid
ing an enforcement application 125 on the network 120 , a
centralized system is provided whereby parsing rules , and / or
enforcement policies may be implemented and updated , as
indicated in FIG . 1 , by an updating system 170. This means
that changes implemented at one or more of the transaction
manager 135 , and the database servers 142-1 , 142-2 , 142-3 ,
or indeed anywhere downstream of the transaction manager ,
do not require each of the other applications 122-1 , 122-2 ,
122-3 or any software at the client 112 to be changed , which
is time - consuming and may be technically challenging ,
particularly where a database ecosystem comprises large
numbers of applications . Rather , the applications 122-1 ,
122-2 , 122-3 are required to conform to one or more policies
set in the enforcement application 125 , and these can be set
centrally , using only one or a limited number of updating
communications . As mentioned , this also means that poten
tial bottlenecks can be avoided , by limiting the size of data
to be written or read to the databases 140-1 , 140-2 , 140-3
and / or by only passing instructions that meet one or more
schemas .
[0063] FIG . 3 is a flow diagram illustrating example
operations that may be performed at the enforcement appli
cation 125 in accordance with example embodiments . Some
operations may be omitted and some other operations may
be added . The numbering of operations is not necessarily
indicative of the order of processing .
[0064] An operation 301 comprises receiving a database
read or write instruction , in any suitable form and from any
suitable client or computing or processing machine in FIG .
1 .
[0065] Another operation 302 may comprise sending the
read or write operation (which may also mean an operation
in a different format derived from the read or write operation
in operation 301) to a transaction manager for providing
transactions for a key - value store of a database in accor
dance with one or more policies .
[0066] Another operation 303 may comprise receiving ,
from the transaction manager , a response message (in any
suitable form) based on operations performed in response to
the read or write request . In the case of a write operation , this
may be a confirmation that the write occurred or did not
occur . In the case of a read operation , this may be the value
of the requested data .
[0067] FIG . 4 is a flow diagram illustrating example
operations that may be performed at the enforcement appli
cation 125 in accordance with a more detailed example
embodiment . Some operations may be omitted and some
other operations may be added . The numbering of operations
is not necessarily indicative of the order of processing .
[0068] An operation 401 comprises receiving a database
read or write instruction , in any suitable form and from any
suitable client or computing or processing machine in FIG .
1 .

US 2020/0073859 A1 Mar. 5 , 2020
6

[0069] An operation 402 comprises determining if the
instruction conforms to one or more predetermined schemas .
[0070] An operation 403 , responsive to a positive deter
mination , sends the read or write message to the transaction
manager .
[0071] An operation 404 , following operation 403 , may
comprise receiving , from the transaction manager , a
response message in any suitable form) confirming the read
or write and / or the key of the key - value store .
[0072] Responsive to a negative determination in opera
tion 402 , operation 405 may send an error message and the
process returns to operation 401 .
[0073] FIG . 5 is a flow diagram illustrating example
operations that may be performed at the enforcement appli
cation 125 in accordance with a more detailed example
embodiment . Some operations may be omitted and some
other operations may be added . The numbering of operations
is not necessarily indicative of the order of processing .
[0074] An operation 501 comprises receiving a database
write instruction , in any suitable form and from any suitable
client or computing or processing machine in FIG . 1 .
[0075] Another operation 502 may comprise determining
if the file (in any suitable form) is below a predetermined
size .
[007] An operation 503 , responsive to a positive deter
mination , sends a write message and the file to the transac
tion manager .
[0077] An operation 504 , following operation 503 ,
receives from the transaction manager a confirmation of the
write and / or a key from the key - value store .
[0078] Responsive to a negative determination in opera
tion 502 , operation 505 may write the file to secondary
memory , i.e. not to the intended database .
[0079] An operation 506 , following operation 505 , may
comprise sending a write instruction and the location of the
file in secondary memory to the transaction manager . The
process may then return to operation 501 .
[0080] FIG . 6 is a flow diagram illustrating example
operations that may be performed at the enforcement appli
cation 125 in accordance with a more detailed example
embodiment . Some operations may be omitted and some
other operations may be added . The numbering of operations
is not necessarily indicative of the order of processing .
[0081] An operation 601 may comprise receiving a data
base read instruction , in any suitable form and from any
suitable client or computing or processing machine in FIG .
1 .
[0082] Another operation 602 may comprise sending the
read instruction and associated key to the transaction man
ager .
[0083] Another operation 603 may comprise receiving
from the transaction manager a value associated with the
key .
[0084] Another operation 604 may comprise determining
if the value is a location in secondary memory . For example ,
the value may be a URL .
[0085] Another operation 605 , responsive to a positive
determination in operation 604 , may comprise receiving the
data from the location in secondary memory .
[0086] Another operation 606 , which may follow opera
tion 605 , may comprise receiving from the transaction
manager confirmation of the write and / or the key of the
key - value store .

[0087] In the event of a negative determination in opera
tion 604 , the process may go directly to operation 606 .
[0088] Another example embodiment may comprise the
enforcement application 125 further being configured to
manage range - scan operations in an efficient manner on the
transactional , distributed database architecture shown in
FIG . 1. As is known , a range - scan is an instruction whereby
a user or client specifies a query that covers a range of key
values and will generally not return only one value . For
example , database query instruction may ask for all values
for surnames beginning “ S ” or for all keys having fixed
parts , e.g. values for all keys with key parts A and B , where
key part C is unknown .
[0089] In example embodiments , and with reference to
FIG . 7 , the enforcement application 125 may periodically
store (locally , and / or outside of the one or more databases)
an index corresponding to a sub - set 620 of the keys that
match specified range values , effectively caching them . The
index corresponding to sub - set 620 may be selected based
on an algorithm of a prediction module 622 which predicts ,
for example based on previous range scan operations and / or
which values are frequently accessed . The predictions deter
mine what is cached in the subset 620. The purpose is to
pre - store an index of key - value pairs outside of the trans
actional database area , i.e. upstream of the transaction
manager 135 , thereby avoiding the aforementioned bottle
neck problem . Range - scan operations have the potential to
return large numbers of values , inevitably slowing down the database , possibly significantly . By caching a selected index ,
and refreshing periodically , the range - scan queries can be
handled efficiently . The transaction manager 135 may need
to know about reads and writes in order to have a consistent
snapshot of the databases 140-1 , 140-2 , 140-3 .
[0090] For example , if a first table stores many records
corresponding to people objects , including first name , sur
name and other data for each person object , we may cache
an index based on frequently accessed objects for a given
surname . If we query the cached index with a given sur
name , we may get back a smaller list (potentially just one)
of first names and can then go back to the first table to
lookup specific values for the required object or objects .

Example Computing Device
[0091] Referring now to FIG . 8 , it is a block diagram that
illustrates a computing device 700 in which software - imple
mented processes of the subject innovations may be embod
ied . Computing device 700 and its components , including
their connections , relationships , and functions , is meant to
be exemplary only , and not meant to limit implementations
of the subject innovations . Other computing devices suitable
for implementing the subject innovations may have different
components , including components with different connec
tions , relationships , and functions .
[0092] Computing device 700 may include a bus 702 or
other communication mechanism for addressing main
memory 706 and for transferring data between and among
the various components of device 700 .
[0093] Computing device 700 may also include one or
more hardware processors 704 coupled with bus 702 for
processing information . A hardware processor 704 may be a
general purpose microprocessor , a system on a chip (SOC) ,
or other processor suitable for implementing the subject
innovations .

US 2020/0073859 A1 Mar. 5 , 2020
7

access memory

[0094] Main memory 706 , such as a random access
memory (RAM) or other dynamic storage device , also may
be coupled to bus 702 for storing information and instruc
tions to be executed by processor (s) 704. Main memory 706
also may be used for storing temporary variables or other
intermediate information during execution of software
instructions to be executed by processor (s) 704 .
[0095] Such software instructions , when stored in non
transitory storage media accessible to processor (s) 704 ,
render computing device 700 into a special - purpose com
puting device that is customized to perform the operations
specified in the instructions . The terms “ instructions ” , “ soft
ware ” , " software instructions ” , “ program ” , “ computer pro
gram ” , “ computer - executable instructions ” , and “ processor
executable instructions ” are to be broadly construed to cover
any machine - readable information , whether or not human
readable , for instructing a computing device to perform
specific operations , and including , but not limited to , appli
cation software , desktop applications , scripts , binaries , oper
ating systems , device drivers , boot loaders , shells , utilities ,
system software , JAVASCRIPT , web pages , web applica
tions , plugins , embedded software , microcode , compilers ,
debuggers , interpreters , virtual machines , linkers , and text
editors .

[009] Computing device 700 also may include read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor (s) 704 .
[0097] One or more mass storage devices 710 may be
coupled to bus 702 for persistently storing information and
instructions on fixed or removable media , such as magnetic ,
optical , solid - state , magnetic - optical , flash memory , or any
other available mass storage technology . The mass storage
may be shared on a network , or it may be dedicated mass
storage . Typically , at least one of the mass storage devices
510 (e.g. , the main hard disk for the device) stores a body of
program and data for directing operation of the computing
device , including an operating system , user application
programs , driver and other support files , as well as other data
files of all sorts .
[0098] Computing device 500 may be coupled via bus 702
to display 712 , such as a liquid crystal display (LCD) or
other electronic visual display , for displaying information to
a computer user . In some configurations , a touch sensitive
surface incorporating touch detection technology (e.g. , resis
tive , capacitive , etc.) may be overlaid on display 712 to form
a touch sensitive display for communicating touch gesture
(e.g. , finger or stylus) input to processor (s) 704 .
[0099] An input device 714 , including alphanumeric and
other keys , may be coupled to bus 702 for communicating
information and command selections to processor 704. In
addition to or instead of alphanumeric and other keys , input
device 714 may include one or more physical buttons or
switches such as , for example , a power (on / off) button , a
“ home ” button , volume control buttons , or the like .
[0100] Another type of user input device may be a cursor
control 716 , such as a mouse , a trackball , or cursor direction
keys for communicating direction information and com
mand selections to processor 704 and for controlling cursor
movement on display 712. This input device typically has
two degrees of freedom in two axes , a first axis (e.g. , x) and
a second axis (e.g. , y) , that allows the device to specify
positions in a plane .

[0101] While in some configurations , such as the configu
ration depicted in FIG . 8 , one or more of display 712 , input
device 714 , and cursor control 716 are external components
(i.e. , peripheral devices) of computing device 700 , some or
all of display 712 , input device 514 , and cursor control 716
are integrated as part of the form factor of computing device
700 in other configurations .
[0102] Functions of the disclosed systems , methods , and
modules may be performed by computing device 700 in
response to processor (s) 704 executing one or more pro
grams of software instructions contained in main memory
706. Such instructions may be read into main memory 706
from another storage medium , such as storage device (s) 710 .
Execution of the software program instructions contained in
main memory 706 cause processor (s) 704 to perform the
functions of the disclosed systems , methods , and modules .
[0103] While in some implementations , functions of the
disclosed systems and methods are implemented entirely
with software instructions , hard - wired or programmable
circuitry of computing device 500 (e.g. , an ASIC , a FPGA ,
or the like) may be used in place of or in combination with
software instructions to perform the functions , according to
the requirements of the particular implementation at hand .
[0104] The term “ storage media ” as used herein refers to
any non - transitory media that store data and / or instructions
that cause a computing device to operate in a specific
fashion . Such storage media may comprise non - volatile
media and / or volatile media . Non - volatile media includes ,
for example , non - volatile random
(NVRAM) , flash memory , optical disks , magnetic disks , or
solid - state drives , such as storage device 510. Volatile media
includes dynamic memory , such as main memory 706 .
Common forms of storage media include , for example , a
floppy disk , a flexible disk , hard disk , solid - state drive ,
magnetic tape , or any other magnetic data storage medium ,
a CD - ROM , any other optical data storage medium , any
physical medium with patterns of holes , a RAM , a PROM ,
and EPROM , a FLASH - EPROM , NVRAM , flash memory ,
any other memory chip or cartridge .
[0105] Storage media is distinct from but may be used in
conjunction with transmission media . Transmission media
participates in transferring information between storage
media . For example , transmission media includes coaxial
cables , copper wire and fiber optics , including the wires that
comprise bus 702. Transmission media can also take the
form of acoustic or light waves , such as those generated
during radio - wave and infra - red data communications .
[0106] Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor (s) 704 for execution . For example , the instructions
may initially be carried on a magnetic disk or solid - state
drive of a remote computer . The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem . A modem
local to computing device 500 can receive the data on the
telephone line and use an infra - red transmitter to convert the
data to an infra - red signal . An infra - red detector can receive
the data carried in the infra - red signal and appropriate
circuitry can place the data on bus 702. Bus 702 carries the
data to main memory 706 , from which processor (s) 704
retrieves and executes the instructions . The instructions
received by main memory 706 may optionally be stored on
storage device (s) 710 either before or after execution by
processor (s) 704 .

US 2020/0073859 Al Mar. 5. 2020
8

[0107] Computing device 700 also may include one or
more communication interface (s) 718 coupled to bus 702. A
communication interface 718 provides a two - way data com
munication coupling to a wired or wireless network link 720
that is connected to a local network 722 (e.g. , Ethernet
network , Wireless Local Area Network , cellular phone net
work , Bluetooth wireless network , or the like) . Communi
cation interface 718 sends and receives electrical , electro
magnetic , or optical signals that carry digital data streams
representing various types of information . For example ,
communication interface 718 may be a wired network
interface card , a wireless network interface card with an
integrated radio antenna , or a modem (e.g. , ISDN , DSL , or
cable modem) .
[0108] Network link (s) 720 typically provide data com
munication through one or more networks to other data
devices . For example , a network link 720 may provide a
connection through a local network 722 to a host computer
724 or to data equipment operated by an Internet Service
Provider (ISP) 726. ISP 726 in turn provides data commu
nication services through the world wide packet data com
munication network now commonly referred to as the
“ Internet ” 728. Local network (s) 722 and Internet 728 use
electrical , electromagnetic or optical signals that carry digi
tal data streams . The signals through the various networks
and the signals on network link (s) 720 and through com
munication interface (s) 718 , which carry the digital data to
and from computing device 700 , are example forms of
transmission media .
[0109] Computing device 700 can send messages and
receive data , including program code , through the network
(s) , network link (s) 720 and communication interface (s)
718. In the Internet example , a server 730 might transmit a
requested code for an application program through Internet
728 , ISP 726 , local network (s) 722 and communication
interface (s) 718 .
[0110] The received code may be executed by processor
704 as it is received , and / or stored in storage device 710 , or
other non - volatile storage for later execution
[0111] The above - described example computer hardware
is presented for the purpose of illustrating certain underlying
computer components that may be employed for implement
ing the subject innovations . This computer hardware , when
executing software that causes the computer hardware to
perform the various processes discussed herein , becomes a
special purpose computer that performs particular useful
applications .
[0112] The subject innovations , however , are not neces
sarily limited to any particular computing environment or
computing device configuration . Instead , the subject inno
vations may be implemented in any type of system archi
tecture or processing environment that one skilled in the art ,
in light of this disclosure , would understand as capable of
supporting the features and functions of the subject innova
tions as presented herein .

and parallel processing may be advantageous . Moreover , the
separation of various system components illustrated above
should not be understood as requiring such separation , and
it should be understood that the described program compo
nents and systems can generally be integrated together in a
single software product or packaged into multiple software
products .
[0114] Various modifications to these aspects will be read
ily apparent , and the principles defined herein may be
applied to other aspects . Thus , the claims are not intended to
be limited to the aspects shown herein , but is to be accorded
the full scope consistent with the language claims , where
reference to an element in the singular is not intended to
mean “ one and only one ” unless specifically so stated , but
rather “ one or more . ” Unless specifically stated otherwise ,
the term " some ” refers to one or more . Unless specifically
stated otherwise , the term “ may ” is used to express one or
more non - limiting possibilities . Headings and subheadings ,
if any , are used for convenience only and do not limit the
subject innovations .
[0115] A phrase , for example , an " aspect ” , an “ embodi
ment ” , a " configuration " , or an “ implementation ” does not
imply that the aspect , the embodiment , the configuration , or
the implementation is essential to the subject innovations or
that the aspect , the embodiment , the configuration , or the
implementation applies to all aspects , embodiments , con
figurations , or implementations of the subject innovations . A
disclosure relating to an aspect , an embodiment , a configu
ration , or an implementation may apply to all aspects ,
embodiments , configurations , or implementations , or one or
more aspects , embodiments , configurations , or implementa
tions . A phrase , for example , an aspect , an embodiment , a
configuration , or an implementation may refer to one or
more aspects , embodiments , configurations , or implementa
tions and vice versa .

1. A method , performed by one or more processors , the
method comprising :

receiving , over a data network from a particular applica
tion of the data network , instructions for performing a
read or write request for data , the instructions being
received in an enforcing application of the data network
for enforcing one or more policies for reading and
writing data to a database , each of the particular appli
cation and the enforcing application comprising a dif
ferent respective microservice of a network of micros
ervices , each of the different respective microservices
of the network of microservices being configured to
interact with each other and one or more other micros
ervices of the network of microservices ;

sending the read or write request from the enforcing
application to a transaction manager for providing
transactions for a key - value store of the database , the
request being in accordance with the one or more
policies to be enforced by the enforcing application ;
and

receiving , at the enforcing application from the transac
tion manager , a response message based on operations
performed by the transaction manager in response to
the read or write request .

2. The method of claim 1 , wherein the enforcing appli
cation accesses one or more policy data objects defining the
policies to be enforced .

3. The method of claim 2 , wherein one or more of the
policy data objects define one or more schemas to which the

Extensions and Alternatives

[0113] It is understood that any specific order or hierarchy
of steps in the processes disclosed is an illustration of
example approaches . Based upon design preferences , it is
understood that the specific order or hierarchy of steps in the
processes may be rearranged , or that all illustrated steps be
performed . Some of the steps may be performed simultane
ously . For example , in certain circumstances , multitasking

US 2020/0073859 Al Mar. 5 , 2020
9

instructions should conform in order for the read or write
request to be sent , and wherein sending occurs only if the
instructions conform .

4. The method of claim 3 , wherein an error message is
returned to a computer system associated with the instruc
tions if the instructions do not conform to the one or more
schemas in the one or more policy data objects .

5. The method of claim 2 , wherein one or more of the
policy data objects define a predetermined file size , and
wherein if the instructions are associated with writing a first
file that is under said predetermined file size , sending the
write request comprises sending the write request and the
first file to the transaction manager for storing the first file as
a value in the key - value store .

6. The method of claim 2 , wherein one or more of the
policy data objects define a predetermined file size , and
wherein if the instructions are associated with writing a
second file that is over said predetermined file size , the
method further comprises storing the second file in second
ary memory and sending the write request comprises send
ing the write request and the location of the second file in the
secondary memory to the transaction manager for storing the
location as a value in the key - value store .

7. The method of claim 6 , wherein receiving the response
message comprises receiving from the transaction manager
a key corresponding to the value in the key - value store .

8. The method of claim 7 , wherein if a subsequent
received instruction is associated with reading the second
file , a further , subsequent step comprises sending a read
request to the transaction manager , the read request includ
ing the key of the second file , receiving from the transaction
manager the location of the second file corresponding to the
key , and retrieving the second file from the secondary
memory using said location , the subsequent instruction
being received subsequent to the instructions being received ,
and the subsequent step being subsequent to the subsequent
instruction being received .

9. The method of claim 8 , wherein the instructions are
received from one or more other applications of the data
network , the other applications being at least partly config
ured to read and / or write data to the database via the
transaction manager and key - value store , and wherein the
method further comprises receiving one or more updated
policies to be enforced by the enforcing application when
receiving instructions from the one or more other applica
tions .

10. The method of claim 9 , further comprising storing a
range - scan table for caching an index associated with a
subset of the keys in the key - value store .

11. The method of claim 10 , wherein the subset of keys
comprise shared key parts .

12. The method of claim 10 , wherein the subset of keys
is determined based on prior range - scan requests .

13. A non - transitory computer - readable storage medium
including instructions that , when executed by at least one
processor of a computing system , cause the computing
system to perform a method comprising :

receiving , over a data network from a particular applica
tion of the data network , instructions for performing a
read or write request for data , the instructions being
received in an enforcing application of the data network
for enforcing one or more policies for reading and
writing data to a database , each of the particular appli
cation and the enforcing application comprising a dif

ferent respective microservice of a network of micros
ervices , each of the different respective microservices
of the network of microservices being configured to
interact with each other and one or more other micros
ervices of the network of microservices ;

sending the read or write request from the enforcing
application to a transaction manager for providing
transactions for a key - value store of the database , the
request being in accordance with the one or more
policies to be enforced by the enforcing application ;
and

receiving , at the enforcing application from the transac
tion manager , a response message based on operations
performed by the transaction manager in response to
the read or write request .

14. The non - transitory computer - readable storage
medium of claim 13 , wherein the enforcing application
accesses one or more policy data objects defining the
policies to be enforced .

15. The non - transitory computer - readable storage
medium of claim 14 , wherein one or more of the policy data
objects define one or more schemas to which the instructions
should conform in order for the read or write request to be
sent , and wherein sending occurs only if the instructions
conform .

16. The non - transitory computer - readable storage
medium of claim 15 , wherein an error message is returned
to a computer system associated with the instructions if the
instructions do not conform to the one or more schemas in
the one or more policy data objects .

17. A system for managing software bugs in a data
processing system , the system comprising :

one or more physical processors ;
a memory storing instructions that , when executed by the

one or more physical processors , cause the system to :
receiving , over a data network from a particular appli

cation of the data network , instructions for perform
ing a read or write request for data , the instructions
being received in an enforcing application of the data
network for enforcing one or more policies for
reading and writing data to a database , each of the
particular application and the enforcing application
comprising a different respective microservice of a
network of microservices , each of the different
respective microservices of the network of micros
ervices being configured to interact with each other
and one or more other microservices of the network
of microservices ;

sending the read or write request from the enforcing
application to a transaction manager for providing
transactions for a key - value store of the database , the
request being in accordance with the one or more
policies to be enforced by the enforcing application ;
and

receiving , at the enforcing application from the trans
action manager , a response message based on opera
tions performed by the transaction manager in
response to the read or write request .

18. The system of claim 17 , wherein the enforcing appli
cation accesses one or more policy data objects defining the
policies to be enforced .

19. The system of claim 18 , wherein one or more of the
policy data objects define one or more schemas to which the

US 2020/0073859 Al Mar. 5. 2020
10

instructions should conform in order for the read or write
request to be sent , and wherein sending occurs only if the
instructions conform .
20. The system of claim 19 , wherein an error message is

returned to a computer system associated with the instruc
tions if the instructions do not conform to the one or more
schemas in the one or more policy data objects .

