US 20230121493A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0121493 A1

Elliot et al.

43) Pub. Date: Apr. 20, 2023

(54)

(71)

(72)

@

(22)

(63)

(60)

100

LOW-LATENCY DATABASE SYSTEM

Applicant: Palantir Technologies Inc., Denver,
CO (US)

Inventors: Mark Elliot, New York, NY (US);
Joseph Ellis, Brooklyn, NY (US);
Rahij Ramsharan, London (GB);
Matthew Sills, New York, NY (US);
Lawrence Manning, Morristown, TN
us)

Appl. No.: 18/083,157

Filed: Dec. 16, 2022

Related U.S. Application Data

Continuation of application No. 17/443,219, filed on
Jul. 22, 2021, now Pat. No. 11,556,535.

Provisional application No. 63/067,576, filed on Aug.
19, 2020.

: - iF ‘
DATA S?URCL(S) : ’ NETWORK :

g : 120

Publication Classification

(51) Int. CL
GOGF 16/2453 (2006.01)
GOGF 16/248 (2006.01)
(52) US.CL
CPC ... GOGF 16/24537 (2019.01); GOGF 16/248
(2019.01)
(57) ABSTRACT

A database system comprised of a decoupled compute layer
and storage layer is implemented to store, build, and main-
tain a canonical dataset, a temporary buffer, and an edits
dataset. The canonical dataset is a set of batch updated data.
The data is appended in chunks to the canonical dataset such
that the canonical dataset becomes a historical dataset over
time. The buffer is a write ahead log that contains the most
recent chunks of data and provides atomicity and durability
for the database system. The edits dataset is the set of data
that contains edits such as cell mutations, row appends
and/or row deletions. The database system enables users to
make cell or row-level edits to tables and observe those edits
in analytical systems or downstream builds with minimal
latency.

DATABASE SYSTEM
158

COMPUTE LAYER
151

PROCESSOR(S)
170

MEMORY
180

QUERY REWRITER
153

DATA STREAMING SERVICE
155

152

US 2023/0121493 Al

Apr. 20,2023 Sheet 1 of 10

Patent Application Publication

841
AFLINd

99T
. iasviva |
TVDINONVOD |

s S e

T
WIAVIHOVIOILS

&1
JASVLIVA
SLIGH

i

JOTAYAS ONINVIILS VIVd

(34
YILRIMIY A¥3N0

08T
AMOWAN

A
(sh10SsSID0Md

1°5H

k) 4
HOVAYIINI ¥34S0

091
(S)AD1ATQ ¥a SN

16T
YIAVT LOJNOD

05T
WHLSAS HSVEVIvVd

143

(s)aDunos vivd

~—

US 2023/0121493 Al

Apr. 20,2023 Sheet 2 of 10

Patent Application Publication

€0R9€5685T

008956851 !

dieysawr

0St
WHILISAS HSVHV.LVd

£OTO0000X0

Z0T00000%0

V< 'Ol

V ON[RAL Aoy moy

\ - puwdSeyreymg 0000
907
PST si57
ADVANALNI
¥ASN
091
(S¥aD1AHd ¥aSN
$0C
8sT w
‘ . MIOMIAN / (s)yad>uNnos viva
N,
70T

US 2023/0121493 Al

Apr. 20,2023 Sheet 3 of 10

Patent Application Publication

PT SueslI) MON
apnLas

€096T968ST
8no(1 0096196851

€0T00000%0
TOT00000X0-

eurjoIe) 0056196851

001.00000%0:

4¢ 'Ol

US 2023/0121493 Al

Apr. 20,2023 Sheet 4 of 10

Patent Application Publication

JC 'Ol

1ase3R(] ﬂmuﬁucnmu pouiof

SPILDS. UIPURL] €089€5685T. COLO0DO0X0,

ZOBIESERST: TOTOO0DOXO!

1089€568ST: TOTO0000X

- TOTO0000X0:

DOTO0000X

US 2023/0121493 Al

Apr. 20,2023 Sheet 5 of 10

Patent Application Publication

ac ‘sid

P SUESLIO MON £09619685T £0100000%0 | - ueny) - €0T00000X0'

(0TL61968G1L

Supapr() Mo €09619685T © €0100000%0 - IPA dper. mﬁoooooxc

8no(0096796851 - TO100000%0' Ppudn) SweN

0146196851
9z; @3 m Noﬁcooooxo

US 2023/0121493 Al

Apr. 20,2023 Sheet 6 of 10

Patent Application Publication

3¢ 'Oid

NURL07/61968ST

JILLIT OT/619686T
Bno(] 0096196851

BUTjOIL) 00SET9685T

rogooooxo

: TOT00000%0.

: 001.00000%0:

uEmZ - dureysount L
Ewﬂmm— [estuoue’) vmaEEoU

: C0100000%0;

- TOTO0000%0:

US 2023/0121493 Al

Apr. 20,2023 Sheet 7 of 10

Patent Application Publication

Ve 'Ol

90¢
¥44409 JHL
WO¥A (S)11ad FHL HSN1d A TIVOIAONEd
ANV 13SV.ILVd SLII NV OL
(S)1L1IAA YO/ANV VIVA MAN FHL ANIddV

70¢
AF4404d V NI (S)LIAH YO/ANV
VIVAd MAN HHIL HJOIS NTRIVIOJNAL

c0¢
ADIAAA YASN YO/ANV IDINO0S
VIVA VNOIA JHSVIVATVOINONVO 'V
YOI (S)LIAT MO/ANY VIVA MAN HAIHDAM

00¢

US 2023/0121493 Al

Apr. 20,2023 Sheet 8 of 10

Patent Application Publication

¢ 'Old

0ce

JASVIVA TVIINONVO ANV

JASVLVA GASdVTTOD AANIGNOD dO/ANY "'GIDIAN

‘@NIOf FHL 40 AINO AHL 40 I'INSHY V NALLAY
A

81

JASV.LVA TVOINONVD
ANV 13SVLVA Fsd V110D QGANIZINOD ¥0O/ANV
‘AFOUFN ‘ANIOL FHL NO AMAN0 HHL H1NDHXH

91¢
JASVIVA TVDINONVD AHL O6 13svivd
AASIVTIOD FHL ANIGNOD JO/ANY ‘HONIN ‘NIOf

A

yig
(S)31N¥ NOLLNTOSHY NO GIsSVd YALIMIAY
AJAN0 AHL VIA LASVIVA SIIAE AH.L 4SdVTIOD

A

(459
dALMIA
RMHENO dHL VIA IHSVIVA SLIAA HHL WOdA AvHEd

oLe

US 2023/0121493 Al

Apr. 20,2023 Sheet 9 of 10

Patent Application Publication

J€ "'OH

N
cre
JHASVIVA TVIOINONVO
AHL ANV JASVIVA TANIGNOD asdvT1OD 0
AANIOf QESIVTTOD ‘GANIENOD ¥O/ANV ‘AIDIIN
‘ANIOf FHL 40 A¥ANO AHL 40 LINSTY V NINIEA
'y

29
LHSVIVA TVOINONVD
HHL ANV LISVIVA AANIGNCD d35d4VTIOO
MO AANIOf GASAVTIOD ‘GANIENOD JO/ANV
‘AIDYFN ‘QANIOf FHL NO AYENO FHL ALNDIXA

gt
JHSVIVATVIINONYD

AHLOL LISVLVA QANIGINOD qAsd V110D ¥0 AINIO!
QaSdV 110D FHI INIGNOD JO/ANY ‘D¥IN ‘NIO{

r -

9ce
S)a1nyg
NOLLOTOST NO Gasve MALFMIN AN JHL
VIA LASV.IVA GINIENOD MO GINIOf AHL 38d V110D

1

pee
MALIMIY ALFNO THL VIA
145V IVA ANIINOD YO aaNIOl FHL WO¥d avad

[£39
LHSV.LVA
CEANIFNOD O ANIOf vV WO OL 1ASYIVA
SIIGHE FHI OL ¥344N49 FHL ANIEFIWOD MO NIO

oce

US 2023/0121493 Al

Apr. 20,2023 Sheet 10 of 10

Patent Application Publication

(442

| ROMIIN SNGRTAN

1voo1

{

|
\

8

JANVYAINI /

N

154
(S)aaA¥AS

007
oTE - oTF
IO VANALNI -~ o,wmwug ; > 1OMINOD
NOLLY DINANNOD FOSAND
A A
A 4 A4
- 15
%mw > gd1AIA
LNdNI
A Fy FN
A 4 A 4 A 4
1152 — 907 —
HOIAR o AJONAIN xv1aSIa
IOVYOILS NIVIA

US 2023/0121493 Al

LOW-LATENCY DATABASE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/443,219, filed Jul. 22, 2021, which
claims a priority benefit under 35 U.S.C. § 119 to U.S.
Provisional Patent Application No. 63/067,576, filed on
Aug. 19, 2020, and titled “LOW-LATENCY DATABASE
SYSTEM.” The disclosures of each of the aforementioned
applications are incorporated herein in their entireties for all
purposes. Any and all applications for which a foreign or
domestic priority claim is identified in the Application Data
Sheet as filed with the present application are hereby incor-
porated by reference under 37 CFR 1.57.

TECHNICAL FIELD

[0002] The present disclosure relates to systems and tech-
niques for data integration, analysis, and visualization. More
specifically, low-latency editing of big database systems.

BACKGROUND

[0003] A database system may store large quantities of
data. For example, a database system may store on the scale
of petabytes to exabytes worth of data. However, such big
database systems often require specialized architecture,
management, processing, and/or maintenance methodolo-
gies in order to maintain the big database system, and there
may be tradeoffs between different approaches.

[0004] For example, some existing database systems, such
as Online Analytical Processing (OLAP) database systems,
are designed for applying complex queries to large amounts
of historical data, for data mining, analytics, and business
intelligence and reporting projects. These OLAP database
systems may rely on a multidimensional data model to allow
for complex analytical and ad hoc queries with a rapid
execution time by multiple simultaneous users or perspec-
tives. However, this emphasis on response time to complex
queries means that these OL AP database systems may not be
able to provide the same level of performance with regards
to rapidly writing to and updating datasets.

[0005] In contrast, other existing database systems, such
as Online Transactional Processing (OLTP) database sys-
tems, are designed for quickly processing a large volume of
transactions that may comprise many different kinds of
instructions (e.g., read, insert, update, and delete). In par-
ticular, databases configured for OLTP may be written to and
updated frequently with low latency and high data integrity.
Accordingly, OLTP database systems are not designed spe-
cifically to rapidly execute complex queries and instead
prioritize the rapid updating of datasets. Due to these
tradeoffs between query performance and write perfor-
mance, a decision usually has to be made between low
latency complex querying or low latency editing.

SUMMARY

[0006] The systems, methods, and devices described
herein each have several aspects, no single one of which is
solely responsible for its desirable attributes. Without lim-
iting the scope of this disclosure, several non-limiting fea-
tures will now be discussed briefly.

[0007] Designing and creating a database system that
provides both low latency complex querying and low

Apr. 20, 2023

latency editing is a difficult task, especially when large
amounts of data (e.g., petabytes, exabytes etc.) must be
stored and queried, or when streaming data is involved.
Furthermore, the use of versioned datasets for reducing the
latency of complex querying (e.g., by storing multiple data
copies) can greatly add to the complexity of the system and
will often result in a tremendous increase in the amount of
data being stored, more datasets that need to be updated, and
additional processing needed to update the datasets. Thus,
there exists a need for low latency editing to big database
systems, such as OLAP oriented database systems, where
the low latency editing bridges toward rapid update database
systems, such as OLTP database systems.

[0008] Described herein is a database system that may
serve as a general data store that is capable of handling
datasets or collections of data that are of varying sizes (e.g.,
from a hundred bytes to terabytes and larger) and formats
(e.g., bytes for a table). The components of this database
system cooperate and work together in a manner that enables
both low-latency edits and low-latency reads for large scale
OLAP-oriented database systems, thereby bridging the
divide between OLAP and OLTP database systems.

[0009] More specifically, the database system may be
comprised of a decoupled compute layer and storage layer,
and it is implemented to store, build, and maintain a canoni-
cal dataset, a durable temporary buffer, and an edits dataset.
The canonical dataset may contain historical data collected
up to a particular point in time (e.g., a historical state). In
some embodiments, the canonical dataset may be created
from a set of batch updated data, and the data can be
appended in chunks to the canonical dataset such that the
canonical dataset becomes a historical dataset over time. The
buffer is a write-ahead log that contains the most-recent edits
(e.g., cell mutations, row appends and/or row deletions) to
the data in the canonical dataset, and it provides atomicity
and durability for the database system. It is faster to write
data to the buffer than it is to read from it; for optimal
performance it is important that the buffer is prevented from
becoming too large. Thus, when certain conditions are met
(e.g., size and/or time), the buffer is dumped to an edits
dataset by appending the contents of the buffer to the edits
dataset and then flushing the buffer. The edits dataset, which
is better for reading large quantities of data but has slower
performance for updates, serves as a growing collection of
all the edits that have been dumped from the buffer over
time.

[0010] Thus, the canonical dataset provides a snapshot or
state of the data at a particular point in time, and the
combined contents of the edits dataset and the buffer col-
lectively serve as a running log of all the edits that have been
made to the data since that point in time. When the database
system receives a query, the database system can perform
on-the-fly construction of a read time synthesized view of
the canonical dataset with all the appropriate edits applied to
it. This synthesized view reflects the “current” or “latest”
view of the data. In order to perform this this read time
resolution, the database system may have a query rewriter
that adapts and rewrites the query to properly and efficiently
join together the contents of the canonical dataset, edits
dataset, and/or the buffer as a means of achieving low
latency observability. In some embodiments, there may be
resolution logic or policies that can be applied during this
read time resolution in order to selectively apply edits from

US 2023/0121493 Al

the edits dataset or the buffer, and to integrate/resolve any
conflicting data between the canonical dataset, edits dataset,
and/or the buffer.

[0011] In some embodiments, the database system may
additionally generate formatted and collapsed versions of
the edits dataset and/or canonical dataset, which correspond
to the particular points in time that those versions were
generated. The edits dataset and/or canonical dataset can be
collapsed in advance of a query being received and pro-
cessed. When a query is received, the query rewriter may
rewrite the query to read data from the collapsed edits
dataset and/or canonical dataset in lieu of the initial edits
dataset and/or canonical dataset in order to optimize and
improve performance of the read time resolution of the
synthesized view.

[0012] The practical outcome of this database system is
that it can be implemented with any OLAP query system
having pluggable data sources and pluggable query rewriters
to provide low latency atomic updates to stored data (e.g., a
change to an individual data value) that are quickly imple-
mented (e.g., within seconds or sub-second) and also low
latency reads from that data. For example, the database
system enables users to make cell or row-level edits to tables
and observe those edits in analytical systems or downstream
builds with minimal latency. A user working with the dataset
can make edits to the data and then see those edits being
reflected in the data in real-time. As a specific example, a
user could issue an edit to data of a dataset displayed in a
user interface and the edit could be immediately imple-
mented by the database system by writing it to the buffer.
Once the edit has been implemented, the user’s display of
the dataset (or any other user’s display of the dataset) can be
quickly updated to reflect the edited data by re-running the
query on the dataset and having the query rewriter read and
merge the contents of the canonical dataset, edits dataset,
and buffer (which contains that edit).

[0013] Accordingly, in various embodiments, large
amounts of data are automatically and dynamically gener-
ated or calculated in response to user inputs and interactions,
and the generated or calculated data is efficiently and com-
pactly presented to a user by the system. Thus, in some
embodiments, the user interfaces described herein are more
efficient as compared to previous user interfaces in which
data is not dynamically updated and compactly and effi-
ciently presented to the user in response to interactive inputs.
[0014] Further, as described herein, the system may be
configured and/or designed to generate user interface data
useable for rendering the various interactive user interfaces
described. The user interface data may be used by the
system, and/or another computer system, device, and/or
software program (for example, a browser program), to
render the interactive user interfaces. The interactive user
interfaces may be displayed on, for example, electronic
displays (including, for example, touch-enabled displays).
[0015] Additionally, it has been noted that design of
computer user interfaces “that are useable and easily learned
by humans is a non-trivial problem for software develop-
ers.” (Dillon, A. (2003) User Interface Design. MacMillan
Encyclopedia of Cognitive Science, Vol. 4, London: Mac-
Millan, 453-458.) The various embodiments of interactive
and dynamic user interfaces of the present disclosure are the
result of significant research, development, improvement,
iteration, and testing. This non-trivial development has
resulted in the user interfaces described herein which may

Apr. 20, 2023

provide significant cognitive and ergonomic efficiencies and
advantages over previous systems. The interactive and
dynamic user interfaces include improved human-computer
interactions that may provide reduced mental workloads,
improved decision-making, reduced work stress, and/or the
like, for a user. For example, user interaction with the
interactive user interfaces described herein may provide an
optimized display of time-varying report-related informa-
tion and may enable a user to more quickly access, navigate,
assess, and digest such information than previous systems.

[0016] In some embodiments, data may be presented in
graphical representations, such as visual representations,
such as charts and graphs, where appropriate, to allow the
user to comfortably review the large amount of data and to
take advantage of humans’ particularly strong pattern rec-
ognition abilities related to visual stimuli. In some embodi-
ments, the system may present aggregate quantities, such as
totals, counts, and averages. The system may also utilize the
information to interpolate or extrapolate, e.g. forecast, future
developments.

[0017] Further, the interactive and dynamic user interfaces
described herein are enabled by innovations in efficient
interactions between the user interfaces and underlying
systems and components. For example, disclosed herein are
improved methods of receiving user inputs, translation and
delivery of those inputs to various system components,
automatic and dynamic execution of complex processes in
response to the input delivery, automatic interaction among
various components and processes of the system, and auto-
matic and dynamic updating of the user interfaces. The
interactions and presentation of data via the interactive user
interfaces described herein may accordingly provide cogni-
tive and ergonomic efficiencies and advantages over previ-
ous systems.

[0018] Various embodiments of the present disclosure
provide improvements to various technologies and techno-
logical fields. For example, as described above, existing data
storage and processing technology (including, e.g., in
memory databases) is limited in various ways (e.g., manual
data review is slow, costly, and less detailed; data is too
voluminous; etc.), and various embodiments of the disclo-
sure provide significant improvements over such technol-
ogy. Additionally, various embodiments of the present dis-
closure are inextricably tied to computer technology. In
particular, various embodiments rely on detection of user
inputs via graphical user interfaces, calculation of updates to
displayed electronic data based on those user inputs, auto-
matic processing of related electronic data, and presentation
of the updates to displayed images via interactive graphical
user interfaces. Such features and others (e.g., processing
and analysis of large amounts of electronic data) are inti-
mately tied to, and enabled by, computer technology, and
would not exist except for computer technology. For
example, the interactions with displayed data described
below in reference to various embodiments cannot reason-
ably be performed by humans alone, without the computer
technology upon which they are implemented. Further, the
implementation of the various embodiments of the present
disclosure via computer technology enables many of the
advantages described herein, including more efficient inter-
action with, and presentation of, various types of electronic
data.

US 2023/0121493 Al

[0019] Additional embodiments of the disclosure are
described below in reference to the appended claims, which
may serve as an additional summary of the disclosure.

[0020] In various embodiments, systems and/or computer
systems are disclosed that comprise a computer readable
storage medium having program instructions embodied
therewith, and one or more processors configured to execute
the program instructions to cause the one or more processors
to perform operations comprising one or more aspects of the
above- and/or below-described embodiments (including one
or more aspects of the appended claims).

[0021] In various embodiments, computer-implemented
methods are disclosed in which, by one or more processors
executing program instructions, one or more aspects of the
above- and/or below-described embodiments (including one
or more aspects of the appended claims) are implemented
and/or performed.

[0022] In various embodiments, computer program prod-
ucts comprising a computer readable storage medium are
disclosed, wherein the computer readable storage medium
has program instructions embodied therewith, the program
instructions executable by one or more processors to cause
the one or more processors to perform operations compris-
ing one or more aspects of the above- and/or below-de-
scribed embodiments (including one or more aspects of the
appended claims).

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a block diagram illustrating a database
system environment.

[0024] FIG. 2A is a block diagram illustrating an example
of the database system environment, according to some
embodiments of the present disclosure.

[0025] FIG. 2B is a flow diagram illustrating an example
combine and flush workflow of the edits dataset and the
buffer of the database system, according to some embodi-
ments of the present disclosure.

[0026] FIG. 2C is a flow diagram illustrating an example
collapse and consolidate workflow of the edits dataset and
the canonical dataset of the database system, according to
some embodiments of the present disclosure.

[0027] FIG. 2D is a flow diagram illustrating an example
join workflow of the edits datasets and the buffer of the
database system, according to some embodiments of the
present disclosure.

[0028] FIG. 2E is a flow diagram illustrating an example
collapse and consolidate workflow of the combined edits
dataset and the canonical dataset of the database system,
according to some embodiments of the present disclosure.

[0029] FIG. 3A is an example flow chart for updating the
canonical dataset, buffer, and edits datasets.
[0030] FIG. 3B is an example flow chart of the query

workflow with the canonical dataset, query rewriter and
edits datasets.

[0031] FIG. 3C is an example flow chart of the data and
query workflow with the canonical dataset, query rewriter,
and edits datasets.

[0032] FIG. 4 illustrates a computer system with which
certain methods discussed herein may be implemented.

Apr. 20, 2023

DETAILED DESCRIPTION

Overview

[0033] Online Analytical Processing (OLAP) database
systems can be used to store, query, and process large
quantities of immutable, versioned datasets. OLAP database
systems typically provide faster querying at the expense of
editing, which is usually performed through bulky or batch
updates of datasets (e.g., in which hundreds of thousands of
rows or data items may be updated at a time). However, it
may be desirable to allow the data to be quickly changed and
updated in short atomic transactions, which is a feature
typically associated with Online Transactional Processing
(OLTP) database systems.

[0034] Described herein is a database system that
addresses this issue through the use of particular compo-
nents that cooperate and work together in a manner that
enables low-latency atomic edits and low-latency reads for
large scale OLAP-oriented database systems, thereby bridg-
ing this divide between OLAP and OLTP database systems.
In particular, the database system enables the edit flow
typical of OLTP database systems and allows a single row or
data item at a time to be instantly updated (e.g., within
seconds or sub-second, not hours). This database system
may serve as a general data store that is capable of handling
datasets or collections of data that are of varying sizes (e.g.,
from a hundred bytes to terabytes and larger) and formats
(e.g., bytes for a table). Although data of any format can be
stored, most of the examples herein are described using
tabular data in order to better facilitate understanding of how
the database system operates.

[0035] The database system may include: (1) a canonical
dataset, which may be immutable (e.g., does not frequently
change) and contains historical data without any user edits
applied to it; (2) a durable buffer, which serves as a tempo-
rary write-ahead log that all user-provided edits are initially
written to; (3) an “edits” dataset, which is a cumulative
collection of all the edits that have been flushed from the
buffer as it is cleared from time to time; and (4) a query
rewriter. In some embodiments, the database system may be
a decoupled database system and its components may be
distributed across separate compute layer and storage layers
in order to better save and manage the resources of the
database system.

[0036] In some embodiments, the canonical dataset may
contain historical data collected up to a particular point in
time (e.g., a historical state). The canonical dataset may be
imported into the database system (e.g., from one or more
external sources during an initialization phase) or it can be
generated over time. For instance, the canonical dataset may
be a bulky and batch updated dataset (e.g., created from a set
of batch updated data) and data can be appended in chunks
to the canonical dataset in order to build a historical record
over time.

[0037] A user may wish to make updates and edits (also
referred to as transactions) to a dataset—more specifically,
the “current” state of the data of a canonical dataset. In some
embodiments, the canonical dataset may contain tabular data
(e.g., data for a table having numerous individual cells that
are arranged into rows and columns). Thus, an edit can range
from minor changes (e.g., change a cell value or add a new
row of data to the table) to comprehensive changes (e.g.,
delete an entire table or replace it with another table). Some

US 2023/0121493 Al

of the more common edits may include cell mutations, row
appends, row deletions, and/or column deletions, etc.
[0038] In some embodiments, the user may be able to
make edits to a dataset—more specifically, the “current”
state of the data of a canonical dataset—as it is displayed
within a user interface. In the case that there have been no
previous edits made to the canonical dataset (e.g., the
canonical dataset was recently initialized), the user interface
may present the canonical dataset and its actual cell values
as an editable table. As the user is making edits to the
displayed data, individual edits can be pushed to the data-
base system as atomic updates to implement and save. In
some embodiments, the database system may adhere to
protocols for atomic updating, such that a user working on
making revisions to a dataset can specifically choose when
to deploy or push those edits to the dataset as an update (e.g.,
have the database system implement the edits).

[0039] In some embodiments, when a user-provided edit
to a dataset is deployed, the database system writes the edit
with a timestamp to the durable buffer. Thus, as edits for the
dataset are received they are added to the buffer in chrono-
logical order. In some embodiments, the buffer may keep
track of edits using a key-to-value format. More specifically,
an edit may have the format of a key (e.g., the row in the
dataset corresponding to the edit) and value (the specific
overwrite to perform) pair. Value can be a complex type and
there may be different flags for different operations, such as
a flag to effectively delete the row corresponding to the key.
Additionally, value could take the format of {[column set],
[value set]} to instead allow for edits or updates to multiple
columns in the row. Column updates could be deletions as
well.

[0040] The buffer may generally only contain the most-
recent edits made to the dataset because the buffer may not
be infinitely scalable, as it is really only good at fast writes
and not fast reads. For optimal query performance, it is
important that the buffer is prevented from becoming too
large since it will be slow during queries. This buffer
performance issue can be solved by flushing or dumping the
buffer (e.g., transferring the contents of the buffer) to an edits
dataset, which is a better long-term storage location com-
pared to the buffer. Flushing or dumping the buffer to the
edits dataset may entail appending the contents of the buffer
(e.g., the instantiated read state of the buffer) to the edits
dataset and then deleting the contents of the buffer, and this
may be performed whenever certain conditions are met (e.g.,
a size threshold and/or time threshold).

[0041] Forexample, in some embodiments, the buffer may
be dumped to the edits dataset periodically (e.g., every five
minutes). In other embodiments, there may be both a size
threshold and a time threshold, and the buffer may be
dumped to the edits dataset whenever one of those thresh-
olds is exceeded. As a specific example, the buffer may be
limited to storing five gigabytes in edits, and the buffer may
be dumped to the edits dataset when that size limit is
exceeded or a time period (e.g., every half hour) has elapsed.
[0042] In some embodiments, once the edits dataset has
been initially created it will continually grow in size as edits
from the buffer are appended to it. More specifically, flushed
edits from the buffer may be added to the existing data in the
edits dataset as rows in time order (e.g., based on a time-
stamp associated with when the edit was written to the buffer
or a time applied to the edit as it is written to edits dataset).
No data in the edits dataset will be deleted or overwritten,

Apr. 20, 2023

which means the edits dataset acts as a growing, long-lived,
efficiently-accessible archive of edits to the dataset received
by the database system (and dumped from the buffer over
time). Although the edits dataset may be better than the
buffer for reading large quantities of data, it may have slower
performance for updates (e.g., over the duration of minutes).
However, that is a complementary weakness that is resolved
by the buffer. Taken together, the combined contents of the
edits dataset and the buffer constitutes a single unified view
of'all the edits (e.g., made to the canonical dataset). Thus, the
canonical dataset provides a snapshot or state of data at a
particular point in time, and the combined contents of the
edits dataset and the buffer collectively serve as a running
log of all the edits that have been made to the data since that
point in time.

[0043] When the database system receives a query, the
database system can perform on-the-fly construction of a
read time synthesized view of the canonical dataset with all
the appropriate edits applied to it. This synthesized view
reflects the “current” or “latest” view of the data. In order to
do this, the database system may take the canonical dataset
and join it with all the edits. However, it may take consid-
erable time (e.g., minutes) to actually join datasets to obtain
a read time synthesized view. Instead, a view time resolution
across datasets can be obtained by rewriting the query to
search and read from the canonical dataset, edits dataset, and
buffer. In other words, the database system may rewrite the
query to read from the canonical dataset, edits dataset, and
buffer, as if they had been coalesced into a single dataset.

[0044] In some embodiments, the database system may
have a query rewriter that adapts and rewrites the query in
order to perform this read time resolution in order to
properly and efficiently join together the contents of the
canonical dataset, edits dataset, and/or the buffer. For
example, in some embodiments, the query rewriter may join
the canonical dataset with the edits dataset and apply the
edits in the edits dataset in time order, and then join that
output with the buffer and apply the edits in the buffer in
time order. Alternatively, the buffer and edits dataset can be
collapsed into a single dataset and joined with the canonical
dataset. In some embodiments, there may be resolution logic
or policies that can be applied during this read time resolu-
tion in order to selectively apply edits from the edits dataset
or the buffer, and to integrate/resolve any conflicting data
between the canonical dataset, edits dataset, and/or the
buffer. This logic may be injected directly into the query to
determine which values to take. In some embodiments,
processing a query of a dataset may involve (1) querying the
buffer and the edits dataset via the query rewriter, (2)
collapsing the buffer and the edits dataset based on one or
more resolution rules established from the query rewriter,
(3) joining the collapsed dataset with the canonical dataset,
and (4) querying the resulting joined dataset.

[0045] There may be a default resolution policy or strat-
egy, but there may also be multiple resolution policies which
are used in different circumstances. For instance, in some
embodiments, a default resolution policy or strategy may be
to always take and implement an edit. For example, any edit
in the edits dataset and/or buffer will be implemented and
seen by the user on top of the canonical dataset. However,
in some embodiments, an alternative resolution policy may
be used, such as a time-based resolution policy that allows
comparisons of timestamps (or any other value) associated
with any edits to timestamps (or any other value) associated

US 2023/0121493 Al

with the corresponding data in the canonical dataset. In other
words, if an edit is more recent than the corresponding data
in the canonical dataset, the edit will be preferred.

[0046] Resolution logic can be completely arbitrary. Reso-
lution can be based on values themselves rather than source.
For instance, there may be overrides where some values are
preferred (e.g., in an enumeration, take higher values).
Resolution logic can vary depending on the type of data.
Resolution logic can even vary by cell (e.g., granular reso-
Iution logic). In other words, for cell A could be resolved
based on logic A, cell B could be resolved based on logic B,
and so forth, while having a global resolution policy if there
is no cell-level logic. Resolution logic can be based on some
type of data or some indicator (not just timestamps). Reso-
Iution logic can even vary based on the permissions of the
incoming user, different edit sources, different scenarios, and
so forth. For example, there may be edits to a particular data
item from user group A and edits to the data item from user
group B, which can be selected depending on the querying
user. Resolution logic can be very complex. If there are edits
for scenario one and edits for scenario two, the database
system may be able to provide the synthesized view for
scenario one, the synthesized view for scenario two, the
synthesized view for both scenario one and scenario two,
and so forth. The database system may have a preference for
one of those synthesized views if there is a conflict. The
database system may also allow for bi-temporality or to
provide a synthesized view of the data as it was at some
point in time. This can easily be performed since the
database system keeps track of individual edits and time-
stamps, whereas traditional database systems often directly
modify or discard the underlying data as edits are imple-
mented.

[0047] In some embodiments, the database system may
support multiple use modes or edit modes to provide dif-
ferent configurations for different use cases. In some
embodiments, in a first edit mode, the database system may
not support batch updating and the datasets in the database
system may consist only of edits, appends, and deletes. This
may be particularly useful for the streaming data use case,
in which the data stream will contain all the information
needed for queries (e.g., no backfill). Thus, the canonical
dataset will often not be needed and only the durable buffer
and edits dataset will be needed in order to put in front of the
user the most up to date version of the data with minimal
latency (e.g., sub-second). Latency here would be measured
from the instant the system knows about an edit to the
moment that the user would see it reflected in a user
interface or in transforms on the data. In the first edit mode,
there may exist an empty canonical dataset with no build
inputs. User edits may be first written to the buffer, which is
periodically flushed to the edits dataset. When a user queries
the canonical dataset, the query rewriter may rewrite any
canonical dataset references as a full join between the edits
dataset and the contents of the buffer, coalescing values
under a “last write wins” resolution policy.

[0048] In some embodiments, in a second edit mode, the
database system may support batch updating and edits to
datasets in the database system may be normally created
through the batch update mechanism. There may be a
canonical dataset containing historical data, which will
typically be built by the batch build system. The query
rewriter may rewrite any canonical dataset references as a
full join between the canonical dataset, the edits dataset, and

Apr. 20, 2023

the contents of the buffer. The query rewriter may coalesce
values between the canonical dataset, the edits dataset, and
the buffer under a “last write wins’” resolution policy or by
leveraging a user-defined function for choosing cell values
when a conflict exists between the canonical dataset, the
edits dataset, and/or the buffer. This mode may be particu-
larly useful for use cases in which there is a lower rate of
streaming data (e.g., not as high throughput and on a longer
time scale) that is processed and combined with historical
data. The historical data can be put into a canonical dataset,
which may also change over time as people fix errors in
entries and can be recompiled or updated over time (without
data obtained from the streaming source). This mode may
also be useful for use cases in which there is no streaming
data and data is generally manually changed. Data can be
primarily imported and stored in the canonical dataset.
Changes to data may not happen very often, but they can be
written to the buffer or edits dataset to allow the changes or
updates to be done with a minimal amount of latency.

[0049] The core features of the database system may
provide numerous advantages. By utilizing the buffer and
the mixing of multiple datasets together, this database sys-
tem may be used with immutable, versioned, big-data sys-
tems while providing low latency reads since the key-value
store scales only with additional edits (not total dataset scale
or its longevity),It can be implemented with any OLAP
query system having pluggable datasources and pluggable
query rewriters to provide low latency atomic updates to
stored data (e.g., a change to an individual data value) that
are quickly implemented (e.g., within seconds or sub-sec-
ond), so that a user working with the dataset (e.g., querying
or editing the dataset) can make edits and then see those
edits reflected on their screen in real-time by having the
query re-run to join the data and update the user’s display.
This database system may work for any primary-keyed
dataset. The database system may also be expanded to work
for any dataset that meets a unique-row constraint and to
allow for edits to be applied to any tabular dataset. For
example, the database system may cover edits at the cell
level where a cell may contain a struct, list, or list of structs.

[0050] As an illustration, if an edit requested by a user
were to change the value of a row in a first name column
from Carolina to Caroline, first the edits (e.g., cell mutations,
row appends and row deletions) for Carolina to Caroline are
written to the buffer Subsequently, edits from the buffer are
appended to the edits dataset and the buffer is flushed. The
query rewriter may (1) read from the buffer and/or the edits
dataset, and (2) collapse the buffer and/or edits dataset based
on resolution rules. After that, the collapsed edits dataset is
joined with the canonical dataset. Then, the actual table view
(e.g., new table showing Caroline as a value of a row in the
first name column) may be rendered onto a user interface
based on a result of a query on the joined collapsed edits
dataset and canonical dataset.

[0051] In some embodiments, the database system may
perform temporal versioning by collapsing the edits dataset
and/or canonical dataset, which may be formatted and
compacted versions of the edits dataset and/or canonical
dataset that incorporate all the edits up to the particular
points in time the datasets were collapsed. There may be a
global resolution strategy that is applied when collapsing
these datasets. This may help alleviate issues with having the
original edits dataset and/or canonical dataset grow

US 2023/0121493 Al

unbounded, which would result in additional time needed to
incrementally add to it or requiring additional storage and
resource utilization/costs.

[0052] For example, the existing edits dataset can be
collapsed by following a set of rules in order to generate a
formatted, condensed version of the edits dataset. In par-
ticular, the contents of the buffer and the edits dataset can be
queried to obtain the most-recent edit associated with each
cell or data item, which can all be combined in order to
generate a collapsed form of the edits dataset. The collapsed
form of the edits dataset represents a collapsed view of all
the edits, and at some point this collapsed form can even
become the truth (e.g., the unincorporated edits can be
purged). When a query is received, the query rewriter may
rewrite the query to read data from the collapsed form of the
edits dataset in lieu of the initial edits dataset in order to
optimize and improve performance of the read time resolu-
tion of the synthesized view.

[0053] Similarly, the database system may be able to
generate a collapsed form of the canonical dataset. For
example, the database system may collapse the buffer into
the edits dataset by applying a set of rules and then join that
collapsed edits dataset with the canonical dataset to create a
collapsed form of the canonical dataset that has all the edits
applied to it. When a query is received, the query rewriter
may rewrite the query to read data from a collapsed form of
the canonical dataset in lieu of the initial canonical dataset
in order to optimize and improve performance of the read
time resolution of the synthesized view.

[0054] These collapsed forms of the edits dataset and/or
canonical dataset can be generated in advance of a query
being received and processed. They can be maintained
separately instead of the traditional technique of pushing
down all edits into a singular canonical dataset (e.g., final-
izing the edits periodically). In some embodiments, different
versions of a dataset can continually accrue as additional
collapsed forms are generated using incremental edits. Over
time, outdated datasets (e.g., the initial canonical dataset
once there are multiple collapsed forms) may be deleted. In
some embodiments, the query rewriter may rewrite a query
to read data from a combination of the original or collapsed
forms of the edits dataset and/or the canonical dataset, which
can be used to optimize and improve performance of the
read time resolution of the synthesized view depending on
the query.

Terms

[0055] In order to facilitate an understanding of the sys-
tems and methods discussed herein, a number of terms are
defined below. The terms defined below, as well as other
terms used herein, should be construed to include the
provided definitions, the ordinary and customary meaning of
the terms, and/or any other implied meaning for the respec-
tive terms. Thus, the definitions below do not limit the
meaning of these terms, but only provide exemplary defi-
nitions.

[0056] Database: Any data structure (and/or combinations
of multiple data structures) for storing and/or organizing
data, including, but not limited to, relational databases (e.g.,
Oracle databases, PostgreSQL databases, etc.), non-rela-
tional databases (e.g., NoSQL databases, etc.), in-memory
databases, spreadsheets, as comma separated values (CSV)
files, eXtendible markup language (XML) files, TeXT
(TXT) files, flat files, spreadsheet files, and/or any other

Apr. 20, 2023

widely used or proprietary format for data storage. Data-
bases are typically the structured set of datasets stored and
accessed electronically from a computer system such as a
datastore. Accordingly, each database referred to herein
(e.g., in the description herein and/or the figures of the
present application) is to be understood as being stored in
one or more data stores.

[0057] Data Store: Any computer readable storage
medium and/or device (or collection of data storage medi-
ums and/or devices). Examples of data stores include, but
are not limited to, optical disks (e.g., CD-ROM, DVD-
ROM,; etc.), magnetic disks (e.g., hard disks, floppy disks,
etc.), memory circuits (e.g., solid state drives, random-
access memory (RAM), etc.), and/or the like. Another
example of a data store is a hosted storage environment that
includes a collection of physical data storage devices that
may be remotely accessible and may be rapidly provisioned
as needed (commonly referred to as “cloud” storage).
[0058] Table: An arrangement of data in columns and
rows. A collection of related data or data elements (e.g.,
values) can be stored across cells located where the rows and
columns intersect. The collection of data elements may be
stored as tabular data, which structures the data into rows,
with each row containing the same number of cells (al-
though some of these cells may be empty). A table may be
used to structure data in a dataset.

[0059] Dataset: A specific collection of bytes/tabular data.
The specific collection of bytes/tabular data may also
include the table(s) that contain, order, and constrain the
bytes /tabular data as well as the relationships between the
tables.

[0060] Edits: Write operations that include additions,
modifications, deletions, cell mutations, appends, insertions,
among other related dataset write operations.

[0061] Transaction: A set of edits or updates to be made to
a dataset that is received by the database system.

[0062] Canonical Dataset: Generally, a dataset that con-
tains a set of “original” or “initial” data (e.g., historical data),
which is usually compiled and/or updated using batch
updates. In some embodiments, the joined edits dataset and
buffer may be collapsed and used to update the canonical
data set in batches. The canonical dataset is typically
updated with the edits last. The canonical dataset may be
optimal for reading large quantities of data but suboptimal
for fast writes over time.

[0063] Edits dataset: Generally, a set of data that contains
edits (e.g., cell mutations, row appends and/or row dele-
tions) that are applicable to the set of data in the canonical
dataset. The edits dataset may grow over time as edits are
flushed from the buffer and appended to the edits dataset.
[0064] Buffer: A write ahead log for providing atomicity
and durability for a database. User-requested edits are first
recorded in the buffer. The edits are then periodically or
intermittently appended to the edits dataset after either a
certain amount of time has passed and/or a certain volume
of edits has occurred and are then flushed from the buffer.
The buffer is optimal for fast writes but suboptimal for reads
over time.

[0065] Query rewriter: An aspect of the database system
that transforms the original query to a new query which
produces the same query results but executes with better
performance (e.g., lower latency). The query rewriter may
rewrite the original query into a new query having multiple
portions that can be executed across different datasets. For

US 2023/0121493 Al

example, the query rewriter may rewrite the original query
into a new query that may be divided into multiple actions
(e.g., based on resolution rules) that are specific for the
buffer, edits dataset and/or canonical dataset.

[0066] Data Object or Object: A data container for infor-
mation representing specific things in the world that have a
number of definable properties. For example, a data object
can represent an entity such as a person, a place, an
organization, a market instrument, or other noun. A data
object can represent an event that happens at a point in time
or for a duration. A data object can represent a document or
other unstructured data source such as an e-mail message, a
news report, or a written paper or article. Each data object
may be associated with a unique identifier that uniquely
identifies the data object. The object’s attributes (e.g. meta-
data about the object) may be represented in one or more
properties.

[0067] Object Type: Type of a data object (e.g., Person,
Event, or Document). Object types may be defined by an
ontology and may be modified or updated to include addi-
tional object types. An object definition (e.g., in an ontology)
may include how the object is related to other objects, such
as being a sub-object type of another object type (e.g. an
agent may be a sub-object type of a person object type), and
the properties the object type may have.

[0068] Properties: Attributes of a data object that represent
individual data items. At a minimum, each property of a data
object has a property type and a value or values.

[0069] Property Type: The type of data a property is, such
as a string, an integer, or a double. Property types may
include complex property types, such as a series data values
associated with timed ticks (e.g. a time series), etc.

[0070] Property Value: The value associated with a prop-
erty, which is of the type indicated in the property type
associated with the property. A property may have multiple
values.

Database System Environment

[0071] FIG. 1 illustrates an example block diagram of a
database system environment 100, according to some
embodiments of the present disclosure. The database system
environment 100 may include components such as one or
more data sources 110, one or more user devices 160, and a
computing database system 150. These components may be
communicatively coupled via a network 120. The network
120 can be of a conventional type, wired or wireless, and
may have numerous different configurations including a star
configuration, token ring configuration or other configura-
tions. Furthermore, the network 120 may include a local area
network (LAN), a wide area network (WAN) (e.g., the
Internet), and/or other interconnected data paths across
which multiple devices may communicate. In some imple-
mentations, the network 120 may be a peer-to-peer network.
The network 120 may also be coupled to or include portions
of a telecommunications network for sending data in a
variety of different communication protocols. In some
implementations, the network 120 includes Bluetooth com-
munication networks or a cellular communications network
for sending and receiving data including via short messaging
service (SMS), multimedia messaging service (MMS),
hypertext transfer protocol (HTTP), direct data connection,
WAP, email, etc.

[0072] For the purposes of simplicity and facilitating
understanding, some of the figures and their accompanying

Apr. 20, 2023

descriptions within this disclosure may refer to a single data
source 110 or user device 160; however, it should be
understood that there can be numerous data sources 110
and/or user devices 160. Furthermore, it should be under-
stood that in the embodiments shown in FIGS. 2A-2E, the
illustrated database system 150 can be similar to, overlap
with, and/or be used in conjunction with the computing
database system 150 of FIG. 1. For example, the database
system 150 of FIG. 2A can similarly include buffer 158,
edits dataset 154, and canonical dataset 156, each of which
may be similar in use and/or implementation as in the
database system 150 in the database system environment
100 of FIG. 1. However, the database environment 100 can
also include a data streaming service 155, query rewriter
153, among other features as shown in the database system
environment 100 of FIG. 1.

[0073] The one or more user devices 160 may each be
capable of generating and displaying a user interface 162 to
a user of the device. Through the user interface 162 of a user
device 160, a user may be able to interact with, and issue
instructions to, the database system 150. For example, the
user may be able to view and make edits to a dataset
managed by the database system 150, to send queries to the
database system 150 in order to retrieve information from
datasets, and so forth.

[0074] The example database system 150 may include one
or more applications such as a query rewriter 153, one or
more services such as a data streaming service 155, one or
more initial datasets such as an edits dataset 154, a canonical
dataset 156 and a buffer 158, and one or more data trans-
formation processes as highlighted in FIGS. 2A-2E. In some
embodiments, the database system 150 may be a decoupled
database system 150 that includes a compute layer 151 and
a storage layer 152 that are decoupled from each other in
order to better save and manage resources. The compute
layer 151 may handle tasks such as edit and query process-
ing, while the storage layer 152 may manage the storage of
edits and datasets. By separating the compute layer 151 and
the storage layer 152, the decoupled database system may be
able to independently scale up or down both the amount of
data a user wants to store as well as the amount of edits and
queries that can be processed. Additionally, for the
decoupled database system 150, the compute layer 151 may
be in a state of quiescence where if nothing is running on the
stack, then no compute resources need to be allocated, and
thus resources are preserved. The compute layer 151 may
include one or more processor(s) 170, memory 180, a query
rewriter 153, and a data streaming service 155. The storage
layer 152 may include an edits dataset 154, a canonical
dataset 156, and a buffer 158. In some embodiments, the
buffer 158 may be a write-ahead log that provides atomicity
and durability for the database system 150.

[0075] In some embodiments, the example database sys-
tem 150 can include a data pipeline system. The database
system 150 can transform data and record the data transfor-
mations. The one or more applications can include applica-
tions that enable users to view datasets, interact with data-
sets, filter data sets, and/or configure dataset transformation
processes or builds. The one or more services can include
services that can trigger the data transformation builds and
API services for receiving and transmitting data. The appli-
cations and services can access network 120 to communicate
with one or more data source(s) 110 or one or more user
device(s) 160. The user device(s) 160 also includes a user

US 2023/0121493 Al

interface 162 to allow the user to visually query, view,
interact with, filter, and/or configure the edits dataset 154,
canonical dataset 156 and buffer 158. The one or more initial
datasets 154, 156 and buffer 158 can be automatically
retrieved from external sources such as from data source(s)
110 and/or can be manually imported by a user such as from
user device(s) 160. The one or more initial datasets 154, 156
and buffer 158 can be in many different formats such as a
tabular data format (SQL, delimited, or a spreadsheet data
format), a data log format (such as network logs), or time
series data (such as sensor data).

[0076] In some embodiments, the database system 150,
via the one or more services, can apply data transformation
processes. Example data transformation processes are
shown in FIGS. 2A-2E. The database system 150 can
receive one or more initial datasets 154, 156 and buffer 158.
The database system 150 can apply a transformation to the
datasets 154, 156 and buffer 158. For example, the database
system 150 can apply a first transformation to the initial edits
dataset 154, which can include combining the edits dataset
154 with the buffer 158 (such as or similar to a SQL
MERGE), joining the edits dataset 154 with the buffer 158
(such as or similar to a SQL JOIN), and/or a filtering of the
edits dataset 154. The output of the first transformation can
include a modified dataset. A second transformation of the
modified dataset can result in an output dataset, such as a
report, collapsed dataset, combined dataset, joined dataset,
merged dataset or a joined table in a tabular data format that
can be stored in the database system 150. Each of the steps
in the example data transformation processes can be
recorded and/or stored by the database system 150 and made
available as a resource, for example to one or more user
devices 160. For example, a resource can include a dataset
and/or a dataset item, a transformation, or any other step in
a data transformation process. As mentioned above, the data
transformation process or build can be triggered by the
database system 150, where example triggers can include
nightly build processes, detected events, manual triggers by
a user via a user device 160 or periodic batch updated data
from data source(s) 110. Additional aspects of data trans-
formations of the edits dataset 154, the canonical dataset
156, the buffer 158 and the database system 150 are
described in further detail below.

[0077] The techniques for recording and transforming data
in the database system 150 may include maintaining an
immutable history of data recording and transformation
actions such as uploading a new dataset version to the
database system 150 and transforming one dataset version to
another dataset version. The immutable history is referred to
herein as “the catalog.” The catalog may be stored in a
database. Preferably, reads and writes from and to the
catalog are performed in the context of ACID-compliant
transactions supported by a database management system.
For example, the catalog may be stored in a relational
database managed by a relational database management
system that supports atomic, consistent, isolated, and
durable (ACID) transactions.

[0078] The catalog can include versioned immutable data-
sets. More specifically, a dataset may encompass an ordered
set of conceptual dataset items. The dataset items may be
ordered according to their version identifiers recorded in the
catalog. Thus, a dataset item may correspond to a particular
version of the dataset. A dataset item may represent a
snapshot of the dataset at a particular version of the dataset.

Apr. 20, 2023

As a simple example, a version identifier of ‘1’ may be
recorded in the catalog for an initial dataset item of a dataset.
If data is later added to the dataset, a version identifier of ‘2’
may be recorded in the catalog for a second dataset item that
conceptually includes the data of the initial dataset item and
the added data. In this example, dataset item ‘2’ may
represent the current dataset version and is ordered after
dataset item “1°.

[0079] As well as being versioned, a dataset may be
immutable. That is, when a new version of the dataset
corresponding to a new dataset item is created for the dataset
in the system, pre-existing dataset items of the dataset are
not overwritten by the new dataset item. In this way,
pre-existing dataset items (i.e., pre-existing versions of the
dataset) are preserved when a new dataset item is added to
the dataset (i.e., when a new version of the dataset is
created). Note that supporting immutable datasets is not
inconsistent with pruning or deleting dataset items corre-
sponding to old dataset versions. For example, old dataset
items may be deleted from the system to conserve data
storage space.

[0080] A version of the dataset may correspond to a
successfully committed transaction against the dataset. In
these embodiments, a sequence of successfully committed
transactions against the dataset corresponds to a sequence of
dataset versions of the dataset (i.e., a sequence of dataset
items of the dataset).

[0081] A transaction against a dataset may add data to the
dataset, edit existing data in the dataset, remove existing
data from the dataset, or a combination of adding, editing, or
removing data. A transaction against a dataset may create a
new version of the dataset (e.g., a new dataset item of the
dataset) without deleting, removing, or modifying pre-ex-
isting dataset items (e.g., without deleting, removing, or
modifying pre-existing dataset versions). A successfully
committed transaction may correspond to a set of one or
more files that contain the data of the dataset item created by
the successful transaction. The set of files may be stored in
a file system.

[0082] In the catalog, a dataset item of a dataset may be
identified by the name or identifier of the dataset and the
dataset version corresponding to the dataset item. In a
preferred embodiment, the dataset version corresponds an
identifier assigned to the transaction that created the dataset
version. The dataset item may be associated in the catalog
with the set of files that contain the data of the dataset item.
In a preferred embodiment, the catalog treats the set of files
as opaque. That is, the catalog itself may store paths or other
identifiers of the set of files but may not otherwise open,
read, or write to the files.

[0083] In sum, the catalog may store information about
datasets. The information may include information identi-
fying different versions (e.g., different dataset items) of the
datasets. In association with information identifying a par-
ticular version (e.g., a particular dataset item) of a dataset,
there may be information identifying one or more files that
contain the data of the particular dataset version (e.g., the
particular dataset item).

[0084] The catalog may store information representing a
non-linear history of a dataset. Specifically, the history of a
dataset may have different dataset branches. Branching may
be used to allow one set of changes to a dataset to be made
independent and concurrently of another set of changes to
the dataset. The catalog may store branch names in asso-

US 2023/0121493 Al

ciation with dataset version identifiers for identifying dataset
items that belong to a particular dataset branch.

[0085] The catalog may provide dataset provenance at the
transaction level of granularity. As an example, suppose a
transformation is executed in the database system 150
multiple times that reads data from dataset A, reads data
from dataset B, transforms the data from dataset A and the
data from dataset B in some way to produce dataset C. As
mentioned, this transformation may be performed multiple
times. Each transformation may be performed in the context
of a transaction. For example, the transformation may be
performed daily after datasets and B are updated daily in the
context of transactions. The result being multiple versions of
dataset A, multiple versions of dataset B, and multiple
versions of dataset C as a result of multiple executions of the
transformation. The catalog may contain sufficient informa-
tion to trace the provenance of any version of dataset C to
the versions of datasets A and B from which the version of
dataset C is derived. In addition, the catalog may contain
sufficient information the trace the provenance of those
versions of datasets A and B to the earlier versions of
datasets A and B from which those versions of datasets Aand
B were derived.

[0086] The provenance tracking ability is the result of
recording in the catalog for a transaction that creates a new
dataset version, the transaction or transactions that the given
transaction depends on (e.g., is derived from). The informa-
tion recorded in the catalog may include an identifier of each
dependent transaction and a branch name of the dataset that
the dependent transaction was committed against.

[0087] According to some embodiments, provenance
tracking extends beyond transaction level granularity to
column level granularity. For example, suppose a dataset
version A is structured as a table of two columns and a
dataset version B is structured as a table of five columns.
Further assume, column three of dataset version B is com-
puted from column one of dataset version A. In this case, the
catalog may store information reflecting the dependency of
column three of dataset version B on column one of dataset
version A.

[0088] The catalog may also support the notion of per-
mission transitivity. For example, suppose the catalog
records information for two transactions executed against a
dataset referred to in this example as “Transaction 1 and
Transaction 2.” Further suppose a third transaction is per-
formed against the dataset which is referred to in this
example as “Transaction 3.” Transaction 3 may use data
created by Transaction 1 and data created by Transaction 2
to create the dataset item of Transaction 3. After Transaction
3 is executed, it may be decided according to organizational
policy that a particular user should not be allowed to access
the data created by Transaction 2. In this case, as a result of
the provenance tracking ability, and in particular because the
catalog records the dependency of Transaction 3 on Trans-
action 2, if permission to access the data of Transaction 2 is
revoked from the particular user, permission to access the
data of Transaction 3 may be transitively revoked from the
particular user.

[0089] The transitive effect of permission revocation (or
permission grant) can apply to an arbitrary number of levels
in the provenance tracking. For example, returning to the
above example, permission may be transitively revoked for
any transaction that depends directly or indirectly on the
Transaction 3.

Apr. 20, 2023

[0090] According to some embodiments, where prov-
enance tracking in the catalog has column level granularity.
Then permission transitivity may apply at the more fine-
grained column level. In this case, permission may be
revoked (or granted) on a particular column of a dataset and
based on the column-level provenance tracking in the cata-
log, permission may be transitively revoked on all direct or
indirect descendent columns of that column.

[0091] A build service can manage transformations which
are executed in the system to transform data. The build
service may leverage a directed acyclic graph data (DAG)
structure to ensure that transformations are executed in
proper dependency order. The graph can include a node
representing an output dataset to be computed based on one
or more input datasets each represented by a node in the
graph with a directed edge between node(s) representing the
input dataset(s) and the node representing the output dataset.
The build service traverses the DAG in dataset dependency
order so that the most upstream dependent datasets are
computed first. The build service traverses the DAG from
the most upstream dependent datasets toward the node
representing the output dataset rebuilding datasets as nec-
essary so that they are up-to-date. Finally, the target output
dataset is built once all of the dependent datasets are
up-to-date.

[0092] The database system 150 can support branching for
both data and code. Build branches allow the same trans-
formation code to be executed on multiple branches. For
example, transformation code on the master branch can be
executed to produce a dataset on the master branch or on
another branch (e.g., the develop branch). Build branches
also allow transformation code on a branch to be executed
to produce datasets on that branch. For example, transfor-
mation code on a development branch can be executed to
produce a dataset that is available only on the development
branch. Build branches provide isolation of re-computation
of graph data across different users and across different
execution schedules of a data pipeline. To support branch-
ing, the catalog may store information represents a graph of
dependencies as opposed to a linear dependency sequence.
[0093] The database system 150 may enable other data
transformation systems to perform transformations. For
example, suppose the system stores two “raw” datasets R1
and R2 that are both updated daily (e.g., with daily web log
data for two web services). Each update creates a new
version of the dataset and corresponds to a different trans-
action. The datasets are deemed raw in the sense that
transformation code may not be executed by the database
system 150 to produce the datasets. Further suppose there is
a transformation A that computes a join between datasets R1
and R2. The join may be performed in a data transformation
system such a SQL database system, for example. More
generally, the techniques described herein are agnostic to the
particular data transformation engine that is used. The data
to be transformed and the transformation code to transform
the data can be provided to the engine based on information
stored in the catalog including where to store the output data.
[0094] According to some embodiments, the build service
supports a push build. In a push build, rebuilds of all datasets
that depend on an upstream dataset or an upstream trans-
formation that has been updated are automatically deter-
mined based on information in the catalog and rebuilt. In this
case, the build service may accept a target dataset or a target
transformation as an input parameter to a push build com-

US 2023/0121493 Al

mand. The build service than determines all downstream
datasets that need to be rebuilt, if any.

[0095] As an example, if the build service receives a push
build command with dataset R1 as the target, then the build
service would determine all downstream datasets that are not
up-to-date with respect to dataset R1 and rebuild them. For
example, if dataset D1 is out-of-date with respect to dataset
R1, then dataset D1 is rebuilt based on the current versions
of datasets R1 and R2 and the current version of transfor-
mation A. If dataset D1 is rebuilt because it is out-of-date,
then dataset D2 will be rebuilt based on the up-to-date
version of dataset D1 and the current version of transfor-
mation B and so on until all downstream dataset of the target
dataset are rebuilt. The build service may perform similar
rebuilding if the target of the push build command is a
transformation.

[0096] The build service may also support triggers. In this
case, a push build may be considered a special case of a
trigger. A trigger, generally, is a rebuild action that is
performed by the build service that is triggered by the
creation of a new version of a dataset or a new version of a
transformation in the system.

[0097] A schema metadata service can store schema infor-
mation about files that correspond to transactions reflected in
the catalog. An identifier of a given file identified in the
catalog may be passed to the schema metadata service and
the schema metadata service may return schema information
for the file. The schema information may encompass data
schema related information such as whether the data in the
file is structured as a table, the names of the columns of the
table, the data types of the columns, user descriptions of the
columns, etc.

[0098] The schema information can be accessible via the
schema metadata service may versioned separately from the
data itself in the catalog. This allows the schemas to be
updated separately from datasets and those updates to be
tracked separately. For example, suppose a comma separated
file is uploaded to the system as particular dataset version.
The catalog may store in association with the particular
dataset version identifiers of one or more files in which the
CSV data is stored. The catalog may also store in association
with each of those one or more file identifiers, schema
information describing the format and type of data stored in
the corresponding file. The schema information for a file
may be retrievable via the scheme metadata service given an
identifier of the file as input. Note that this versioning
scheme in the catalog allows new schema information for a
file to be associated with the file and accessible via the
schema metadata service. For example, suppose after storing
initial schema information for a file in which the CSV data
is stored, updated the schema information is stored that
reflects a new or better understanding of the CSV data stored
in the file. The updated schema information may be retrieved
from the schema metadata service for the file without having
to create a new version of the CSV data or the file in which
the CSV data is stored.

[0099] When a transformation is executed, the build ser-
vice may encapsulate the complexities of the separate ver-
sioning of datasets and schema information. For example,
suppose transformation A described above in a previous
example that accepts the dataset R1 and dataset R2 as input
is the target of a build command issued to the build service.
In response to this build command, the build service may
determine from the catalog the file or files in which the data

Apr. 20, 2023

of the current versions of datasets R1 and R2 is stored. The
build service may then access the schema metadata service
to obtain the current versions of the schema information for
the file or files. The build service may then provide all of
identifiers or paths to the file or files and the obtained
schema information to the data transformation engine to
execute the transformation A. The underlying data transfor-
mation engine interprets the schema information and applies
it to the data in the file or files when executing the trans-
formation A.

Database System Environment Example

[0100] FIGS. 2A-2E illustrate examples of the database
system environment to provide a framework of the specific
systems, components, and methods described herein. Their
descriptions are provided for exemplary purposes and are
not intended to limit the techniques to the example database
system, the example datasets, the example data chunks or
the example data. Furthermore, it should be noted that the
buffer 158, canonical dataset 156, and edits dataset 154 in
FIGS. 2A-2E are represented as tabular data, however this is
for the purpose of facilitating understanding and is not
meant to be limiting; data contained in the buffer 158,
canonical dataset 156, and edits dataset 154 may be repre-
sented in other non-tabular ways (e.g., tuple store, multi-
value, or objectlink).

[0101] FIG. 2A illustrates an example database system
environment 200. In the example database system environ-
ment 200, data chunks may be batch updated. For example,
data chunks may be provided by data source(s) 110 and/or
user device(s) 160 to the database system 150 over a
network 120. The database system 150 may receive these
data chunks, such as via the data streaming service 155
(shown in FIG. 1). The data chunks may be defined by one
or more object types, each of which may be associated with
one or more property types. At the highest level of abstrac-
tion, each data chunk contains at least one data object, where
the data object is a container for information representing
things in the world. For example, a data object can represent
an entity such as a person, a place, an organization, a market
instrument, or other noun. A data object can also represent
an event that happens at a point in time or for a duration.
Additionally a data object can represent a document or other
unstructured data source such as an e-mail message, a news
report, or a written paper or article. Each data object is
associated with a unique identifier that uniquely identifies
the data object within the database system 150.

[0102] Different types of data objects may have different
property types. For example, a “Person” data object might
have an “Eye Color” property type and an “Event” data
object might have a “Date” property type. Each property as
represented by data in the database system 150 may have a
property type.

[0103] Objects may be instantiated in the database system
150 in accordance with the corresponding object definition
for the particular object. For example, a specific monetary
payment (e.g., an object of type “event”) of US $30.00 (e.g.,
a property of type “currency”) taking place on Mar. 27, 2009
(e.g., a property of type “date”) may be stored in the
database system 150 as an event object with associated
currency and date properties. The data objects may support
property multiplicity. In particular, a data object may be
allowed to have more than one property of the same property

US 2023/0121493 Al

type. For example, a “Person” data object might have
multiple “Address” properties or multiple “Name” proper-
ties.

[0104] The canonical dataset 156 is a set of batch updated
data that makes up the main, underlying, full dataset. In the
example database system environment 200, the canonical
dataset 156 stores historical data containing four rows of
data (e.g., row 1: 0x00000100, 1589536800, Caroline, Den-
ver; 35, 5/15/2020) with five columns (e.g., Row ID, Time-
stamp, Name, City, and Age).

[0105] The buffer 158 may record specific collections of
incoming data chunks comprising new data and/or edits
applicable to the data contained in the canonical dataset 156,
and the buffer 158 may initially store each incoming data
chunk before the contents of the buffer 158 are flushed and
added to the edits dataset 154. In the illustrated example of
the database system environment 200, the buffer 158 stores
the data chunk containing two rows of data (e.g., row 1:
Doug, Seattle, null; row 2: null, New Orleans, 24) with three
columns (e.g., name edit, city edit, and age edit). The buffer
158 is a columnar store buffer in which there is a row key,
column, value, and timestamp for each row. The breakdown
of each element in the structure of the buffer 158 is further
illustrated via the sample buffer legend 206.

[0106] The edits dataset 154 is the set of data that contains
edits (e.g., cell mutations, row appends and/or row dele-
tions) of the canonical dataset 156 and/or the buffer 158. The
edits dataset may be partial, in that, the edits dataset does not
have to include all of the original columns from the canoni-
cal dataset 156 and/or the buffer 158. In the example
database system environment 200, the edits dataset 154
contains an edit of the canonical dataset 156 that is received
at a later timestamp than the original data and is an edit to
the first row of data of the canonical dataset data via a name
edit and age edit (e.g., row 1: 0x00000100, 1589619500,
Carolina, null, 36).

[0107] InFIGS. 2B-2E various transformation methods of
the buffer 158, edits dataset 154, and canonical dataset 156
are shown. Such methods include combining, merging,
collapsing, and joining of the contents of the buffer 158,
edits dataset 154, and/or canonical dataset 156.

[0108] Referring now to FIG. 2B, a flow diagram is shown
that illustrates an example combine and flush workflow
between the edits dataset 154 and the buffer 158 of the
database system 150. In some embodiments, this particular
workflow may be performed once certain conditions are
met, such as if enough time has elapsed (e.g., a time
threshold) and/or if the contents of the buffer 158 exceed a
certain size (e.g., a size threshold). For example, there could
be a five gigabyte size threshold and a thirty minute time
threshold, and this workflow may be performed whenever
one of those thresholds is exceeded. In the workflow, at step
208, the contents of the buffer 158 are first appended to the
end of the edits dataset 154A. Then the buffer 158 may be
periodically flushed 210, resulting in an empty buffer 158A.
However, the empty buffer 158A shown is not meant to be
limiting, and depending on the implementation, partial
flushing of the buffer 158 may also occur.

[0109] FIG. 2C is a flow diagram illustrating an example
collapse and consolidate workflow that is applicable to the
edits dataset 154A and the canonical dataset 156 of the
database system 150. In FIG. 2C, the same edits dataset
154A of FIG. 2B is shown in order to illustrate the collapse
and consolidate workflow. This collapse and consolidate

Apr. 20, 2023

workflow can be used to generate a collapsed form of the
edits dataset 154A, which can be used by the database
system 150 to optimize and improve performance associated
with query processing (e.g., the read time resolution of the
synthesized view of the dataset). In the workflow, at step
212, the edits dataset 154 A may first be collapsed based on
one or more selected columns. For example, the collapsed
edits dataset 154B may contain the rows from the edits
dataset 154A that are sorted based on the “age” column. In
practice however, the collapsed edits dataset 154B may
contain only a subset of the data in the edits dataset 154 (e.g.,
a subset of rows and/or columns). At step 214, the collapsed
edits dataset 154B may be consolidated with the canonical
dataset 156 based on resolution rules from the query rewriter
153. For instance, at step 216, the collapsed edits dataset
154B may be joined (e.g., left join based on row ID)with the
canonical dataset 156 in order to form a joined canonical
dataset 156A. Or, at step 218, the collapsed edits dataset
154B may be combined with the canonical dataset 156 in
order form a combined canonical dataset 156B. At step 220,
the database system may take the combined canonical
dataset 156 and apply the more-recent edits taken from the
collapsed edits dataset 154B to the data originating from the
canonical dataset 156. For instance, the database system
may go through the edits obtained from the collapsed edits
dataset 154B in chronological order (e.g., based on time-
stamp), determine the row 1D associated with each edit, and
then apply that edit to the corresponding row of data taken
from the canonical dataset 156 (e.g., with a matching row
ID). The result can be the merged canonical dataset 156C,
which can be in a sorted order depending on need. In the
figure, the merged canonical dataset 156C is shown sorted
by age, from youngest to oldest).

[0110] FIG. 2D is a flow diagram illustrating an example
join workflow that is applicable to the edits datasets 154A
and the buffer 158B of the database system 150. In this
example join workflow, at step 222, the edits dataset 154A
from FIG. 2B is joined (e.g., left join based on row ID) with
new updated buffer 158B to form a joined edits dataset
154C. Afterwards, the joined edits dataset 154C may addi-
tionally be transformed such as being combined, collapsed,
joined, or merged (among other operations) based on the
resolution rules of the query rewriter 153.

[0111] FIG. 2E is a flow diagram illustrating an example
collapse and consolidate workflow applicable to a combined
edits dataset 154D and the canonical dataset 156 of the
database system 150. For the purpose of illustrating the
collapse and consolidate workflow, the combined edits data-
set 154D may represent the combination of buffer 158B and
edits dataset 154 A from FIG. 2D if a combine had occurred
(e.g., step 218 from FIG. 2C) instead of a join at step 222.
At step 224, the combined edits dataset 154D may first be
collapsed based on one or more selected columns. For
example, as shown in the figure, the combined edits dataset
154D is collapsed by removing the “age” and “city” column,
which results in a combined collapsed edits dataset 154E. At
step 226, the combined collapsed edits dataset 154E may be
consolidated with the canonical dataset 156 based on reso-
Iution rules from the query rewriter 153. For instance, at step
228, the combined collapsed edits dataset 154E may be
joined (e.g., left join based on row ID) with the canonical
dataset 156, forming the joined canonical dataset 156D. Or,
at step 230, the combined collapsed edits dataset 154E may
be combined with the canonical dataset 156, such as by

US 2023/0121493 Al

appending the rows of the combined collapsed edits dataset
154E to the end of the canonical dataset 156, to form the
combined canonical dataset 156E. At step 232, the database
system may take the combined canonical dataset 156F and
apply the more-recent edits taken from the combined col-
lapsed edits dataset 154E to the data originating from the
canonical dataset 156. For instance, the database system
may go through the edits obtained from the combined
collapsed edits dataset 154E in chronological order (e.g.,
based on timestamp), determine the row ID associated with
each edit, and then apply that edit to the corresponding row
of data taken from the canonical dataset 156 (e.g., with a
matching row ID). The result can be the merged canonical
dataset 156F, which can be in a sorted order depending on
need. For example, in the figure, the merged canonical
dataset 156F may be a result from being sorted by name in
alphabetical order.

[0112] Although FIGS. 2B-2E display particular worktflow
transformation operation ordering with specific dataset
examples, this is not intended to be limiting. Other combi-
nations and ordering of such transformation operation such
as combining, joining, flushing, merging, collapsing among
other operations may be performed on the canonical dataset
156, edits dataset 154 and the buffer 158.

Database System Environment Flow Example

[0113] FIG. 3A is an example flow chart 300 for updating
the canonical dataset 156, buffer 158, and edits dataset 154.
[0114] At block 302, the database system 150 receives one
or more data chunks from a data source 110 and/or user
device 160 over network 120 via data streaming service 155.
The data chunks may comprise new data and/or edits for the
canonical dataset 156. For example, the data chunks may
contain user-provided edits to be applied to the canonical
dataset 156.

[0115] At block 304, the database system 150 temporarily
stores the new data and/or edits from the one or more data
chunks in a buffer 158. In some embodiments, the database
system 150 may add a timestamp to each new data item or
edit as it is written to the buffer 158 and the contents of the
buffer 158 may be arranged in time order.

[0116] At block 306, the instantiated read state or contents
of the buffer 158 (e.g., the one or more data chunks) are
appended to the edits dataset 154 and the data chunks are
flushed from the buffer 158. The edits dataset 154 serves as
a better long-term storage location compared to the buffer
158. This step may be performed periodically when a time
threshold is exceeded or it may be performed whenever the
buffer 158 reaches a certain size threshold. For example, in
some embodiments, block 306 may be performed every five
minutes and the edits dataset 154 will grow in size over time.
[0117] As a very specific example implementation of the
blocks in the flow chart 300, in some embodiments, the
database system 150 may be configured to be used with
streaming data that contains all the information needed for
queries. Thus, there would not be a need to backfill the
canonical dataset with historical data and only the durable
buffer 158 and the edits dataset 154 would be needed to
provide a user with the most up-to-date version of the data.
New data from the data stream would be received at block
302 and then written to the buffer 158 at block 304. At the
same time, at block 302, any user edits to existing data can
also be received as they are provided by the user, and the
edits can be written to the buffer 158 at block 304. From time

Apr. 20, 2023

to time, block 306 may be performed and the contents of the
buffer 158 may be appended to the edits dataset 154 and
flushed from the buffer 158 in order to clear the buffer 158
and prevent it from becoming unwieldy to read from. Thus,
the combined contents of the buffer 158 and the edits dataset
154 will encapsulate all the streaming data and edits that
have been received by the database system 150. If a user
wishes to query all of that data, the query rewriter may
rewrite the query to perform a full join between the edits
dataset 154 and the buffer 158 based on a “last write wins”
resolution policy.

[0118] FIG. 3B is an example flow chart 310 of the query
workflow with the canonical dataset 156, query rewriter 153
and edits datasets 154.

[0119] At block 312, the database system 150 reads from
the edits dataset 154 via the query rewriter 153.

[0120] At block 314, the edits dataset 154 is collapsed via
the query rewriter 153 based on one or more resolution rules.
For example, the edits dataset 154 can be collapsed by
de-duplicating data, removing one or more rows, removing
one or more columns, sorting the data, and so forth. The
result is a collapsed edits dataset.

[0121] At block 316, the collapsed edits dataset is joined,
merged, and/or combined to the canonical dataset 156.
Examples of this are shown in FIG. 2C.

[0122] At block 318, a query is executed on the joined,
merged, and/or combined dataset (obtained from block 316
by consolidating the collapsed edits dataset and canonical
dataset 156).

[0123] At block 320, a result of the query of the joined,
merged, and/or combined dataset (obtained from block 316
by consolidating the collapsed edits dataset and canonical
dataset 156) is returned.

[0124] FIG. 3C is an example flow chart 330 of the data
and query workflow with the canonical dataset 156, query
rewriter 153, and edits dataset 154. More specifically, the
example flow chart 330 illustrates the read time resolution of
a synthesized view of the current state of the data contained
in the canonical dataset 156 in response to a query.

[0125] After the database system 150 receives a query
associated with the canonical dataset 156, the query rewriter
153 of the database system 150 may rewrite the query in
order to perform a read time resolution of a synthesized view
of the contents between the canonical dataset 156, edits
dataset 154, and buffer 158. This may have the practical
effect of applying the edits that are contained within the edits
dataset 154 and buffer 158 to the data of the canonical
dataset 156 in order to generate a current view of the data of
the canonical dataset 156.

[0126] At block 332, the contents of the buffer 158 may be
joined or combined with the edits dataset 154 in order to
form a joined or combined edits dataset. Examples of this
are shown in FIGS. 2D and 2E. For example, the edits in the
buffer 158 may be appended to the existing edits contained
in the edits dataset 154, and each of the edits may have a
timestamp associated with it.

[0127] At block 334, the database system 150 reads from
the joined or combined edits dataset via the query rewriter
153.

[0128] At block 336, the database system 150 collapses
the joined or combined edits dataset via the query rewriter
153 based on one or more resolution rules. For instance, the
resolution rules may dictate de-duplicating data, removing
one or more rows, removing one or more columns, sorting

US 2023/0121493 Al

the data, and so forth. As an example, the most-recent edit
for each data item (determined using the timestamps) in the
joined or combined dataset may be kept and any intervening
edits for that data item (which do not affect the “current”
state of that data item) may be thrown away.

[0129] At block 338, the collapsed joined/combined edits
dataset is joined, merged, and/or combined with the canoni-
cal dataset 156. For example, the edits in the collapsed
joined/combined dataset can be appended to the canonical
dataset 156 (e.g., as in step 230 in FIG. 2E).

[0130] At block 340, the query is executed on the resulting
joined, merged and/or combined dataset from block 338
(e.g., obtained from consolidating the collapsed joined/
combined edits dataset and the canonical dataset 156).
[0131] At block 342, a result of the query of the resulting
joined, merged and/or combined dataset from block 338
(e.g., obtained from consolidating the collapsed joined/
combined edits dataset and the canonical dataset 156) is
returned. More specifically, block 338 generates a synthe-
sized view of the “current” state of the data by applying
accrued edits to the canonical dataset 156, block 340 runs
the query on that view, and block 342 returns the same query
results as if all the data were only stored in a canonical
dataset and all edits were made directly to that canonical
dataset.

[0132] As a specific example of this workflow being
implemented, in some embodiments, the canonical dataset
156 may store historical data and it can be initially con-
structed using a batch update mechanism. For situations in
which there is a lower rate of streaming data (e.g., not as
high throughput and on a longer time scale) that is typically
processed and combined with the historical data in the
canonical dataset 156, or for situations in which there is no
streaming data and new data or edits are applied to the
canonical dataset 156 at a slower rate, new data and edits can
be written to the buffer 158. From time to time, those edits
can be flushed to the edits dataset 154. When a query
associated with the canonical dataset 156 is received, the
query rewriter 153 may rewrite any canonical dataset ref-
erences in order to perform a read time resolution of a
synthesized view across the canonical dataset 156, edits
dataset 154, and buffer 158.

[0133] This can be thought of as a full join between the
canonical dataset 156, the edits dataset 154, and the contents
of the buffer 158, with the query rewriter 153 coalescing
values between the three components based on a resolution
policy (e.g., “last write wins’” resolution policy). For
example, the contents of the buffer 158 may be joined with
the edits dataset 154 at block 332. At blocks 334 and 336, the
resulting combined dataset can be collapsed by taking the
most-recent edits for each data item, and the collapsed
combined dataset can be combined with the canonical
dataset 156, which can be collapsed further by applying the
most-recent edits for each data item to the existing data in
the canonical dataset 156. The result is a synthesized view
of the current state of the data which can be rendered and
displayed to a user.

Additional Implementation Details and Embodiments

[0134] Various embodiments of the present disclosure
may be a system, a method, and/or a computer program
product at any possible technical detail level of integration.
The computer program product may include a computer
readable storage medium (or mediums) having computer

Apr. 20, 2023

readable program instructions thereon for causing a proces-
sor to carry out aspects of the present disclosure.

[0135] For example, the functionality described herein
may be performed as software instructions are executed by,
and/or in response to software instructions being executed
by, one or more hardware processors and/or any other
suitable computing devices. The software instructions and/
or other executable code may be read from a computer
readable storage medium (or mediums).

[0136] The computer readable storage medium can be a
tangible device that can retain and store data and/or instruc-
tions for use by an instruction execution device. The com-
puter readable storage medium may be, for example, but is
not limited to, an electronic storage device (including any
volatile and/or non-volatile electronic storage devices), a
magnetic storage device, an optical storage device, an elec-
tromagnetic storage device, a semiconductor storage device,
or any suitable combination of the foregoing. A non-exhaus-
tive list of more specific examples of the computer readable
storage medium includes the following: a portable computer
diskette, a hard disk, a solid state drive, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

[0137] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing

device.
[0138] Computer readable program instructions (as also
referred to herein as, for example, “code,” “instructions,”
“module,” “application,” “software application,” and/or the
like) for carrying out operations of the present disclosure
may be assembler instructions, instruction-set-architecture
(ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, C++, or the like,
and procedural programming languages, such as the “C”
programming language or similar programming languages.

29 <

US 2023/0121493 Al

Computer readable program instructions may be callable
from other instructions or from itself, and/or may be invoked
in response to detected events or interrupts. Computer
readable program instructions configured for execution on
computing devices may be provided on a computer readable
storage medium, and/or as a digital download (and may be
originally stored in a compressed or installable format that
requires installation, decompression or decryption prior to
execution) that may then be stored on a computer readable
storage medium. Such computer readable program instruc-
tions may be stored, partially or fully, on a memory device
(e.g., a computer readable storage medium) of the executing
computing device, for execution by the computing device.
The computer readable program instructions may execute
entirely on a user’s computer (e.g., the executing computing
device), partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly
on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present disclosure.

[0139] Aspects of the present disclosure are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0140] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart(s) and/or block diagram(s) block
or blocks.

[0141] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or

Apr. 20, 2023

other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks. For
example, the instructions may initially be carried on a
magnetic disk or solid state drive of a remote computer. The
remote computer may load the instructions and/or modules
into its dynamic memory and send the instructions over a
telephone, cable, or optical line using a modem. A modem
local to a server computing system may receive the data on
the telephone/cable/optical line and use a converter device
including the appropriate circuitry to place the data on a bus.
The bus may carry the data to a memory, from which a
processor may retrieve and execute the instructions. The
instructions received by the memory may optionally be
stored on a storage device (e.g., a solid state drive) either
before or after execution by the computer processor.

[0142] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. In
addition, certain blocks may be omitted in some implemen-
tations. The methods and processes described herein are also
not limited to any particular sequence, and the blocks or
states relating thereto can be performed in other sequences
that are appropriate.

[0143] It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts or carry
out combinations of special purpose hardware and computer
instructions. For example, any of the processes, methods,
algorithms, elements, blocks, applications, or other func-
tionality (or portions of functionality) described in the
preceding sections may be embodied in, and/or fully or
partially automated via, electronic hardware such applica-
tion-specific processors (e.g., application-specific integrated
circuits (ASICs)), programmable processors (e.g., field pro-
grammable gate arrays (FPGAs)), application-specific cir-
cuitry, and/or the like (any of which may also combine
custom hard-wired logic, logic circuits, ASICs, FPGAs, etc.
with custom programming/execution of software instruc-
tions to accomplish the techniques).

[0144] Any of the above-mentioned processors, and/or
devices incorporating any of the above-mentioned proces-
sors, may be referred to herein as, for example, “computers,”
“computer devices,” “computing devices,” “hardware com-
puting devices,” “hardware processors,” “processing units,”
and/or the like. Computing devices of the above-embodi-
ments may generally (but not necessarily) be controlled
and/or coordinated by operating system software, such as
Mac OS, 108, Android, Chrome OS, Windows OS (e.g.,
Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10, Windows Server, etc.), Windows CE, Unix,
Linux, SunOS, Solaris, Blackberry OS, VxWorks, or other

US 2023/0121493 Al

suitable operating systems. In other embodiments, the com-
puting devices may be controlled by a proprietary operating
system. Conventional operating systems control and sched-
ule computer processes for execution, perform memory
management, provide file system, networking, I/O services,
and provide a user interface functionality, such as a graphi-
cal user interface (“GUI”), among other things.

[0145] For example, FIG. 4 is a block diagram that illus-
trates a computer system 400 upon which various embodi-
ments may be implemented. Computer system 400 includes
a bus 402 or other communication mechanism for commu-
nicating information, and a hardware processor, or multiple
processors, 404 coupled with bus 402 for processing infor-
mation. Hardware processor(s) 404 may be, for example,
one or more general purpose microprocessors.

[0146] Computer system 400 also includes a main
memory 406, such as a random access memory (RAM),
cache and/or other dynamic storage devices, coupled to bus
402 for storing information and instructions to be executed
by processor 404. Main memory 406 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor 404. Such instructions, when stored in storage
media accessible to processor 404, render computer system
400 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0147] Computer system 400 further includes a read only
memory (ROM) 408 or other static storage device coupled
to bus 402 for storing static information and instructions for
processor 404. A storage device 410, such as a magnetic
disk, optical disk, or USB thumb drive (Flash drive), etc., is
provided and coupled to bus 402 for storing information and
instructions.

[0148] Computer system 400 may be coupled via bus 402
to a display 412, such as a cathode ray tube (CRT) or LCD
display (or touch screen), for displaying information to a
computer user. An input device 414, including alphanumeric
and other keys, is coupled to bus 402 for communicating
information and command selections to processor 404.
Another type of user input device is cursor control 416, such
as a mouse, a trackball, or cursor direction keys for com-
municating direction information and command selections
to processor 404 and for controlling cursor movement on
display 412. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a
plane. In some embodiments, the same direction information
and command selections as cursor control may be imple-
mented via receiving touches on a touch screen without a
cursor.

[0149] Computing system 400 may include a user inter-
face module to implement a GUI that may be stored in a
mass storage device as computer executable program
instructions that are executed by the computing device(s).
Computer system 400 may further, as described below,
implement the techniques described herein using custom-
ized hard-wired logic, one or more ASICs or FPGAs,
firmware and/or program logic which in combination with
the computer system causes or programs computer system
400 to be a special-purpose machine. According to one
embodiment, the techniques herein are performed by com-
puter system 400 in response to processor(s) 404 executing
one or more sequences of one or more computer readable
program instructions contained in main memory 406. Such

Apr. 20, 2023

instructions may be read into main memory 406 from
another storage medium, such as storage device 410. Execu-
tion of the sequences of instructions contained in main
memory 406 causes processor(s) 404 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0150] Various forms of computer readable storage media
may be involved in carrying one or more sequences of one
or more computer readable program instructions to proces-
sor 404 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid state drive of
a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc-
tions over a telephone line using a modem. A modem local
to computer system 400 can receive the data on the tele-
phone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 402. Bus 402 carries the
data to main memory 406, from which processor 404
retrieves and executes the instructions. The instructions
received by main memory 406 may optionally be stored on
storage device 410 either before or after execution by
processor 404.

[0151] Computer system 400 also includes a communica-
tion interface 418 coupled to bus 402. Communication
interface 418 provides a two-way data communication cou-
pling to a network link 420 that is connected to a local
network 422. For example, communication interface 418
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN (or
WAN component to communicate with a WAN). Wireless
links may also be implemented. In any such implementation,
communication interface 418 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

[0152] Network link 420 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data
equipment operated by an Internet Service Provider (ISP)
426. ISP 426 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 428. Local
network 422 and Internet 428 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 420 and through communication interface 418,
which carry the digital data to and from computer system
400, are example forms of transmission media.

[0153] Computer system 400 can send messages and
receive data, including program code, through the network
(s), network link 420 and communication interface 418. In
the Internet example, a server 430 might transmit a
requested code for an application program through Internet
428, ISP 426, local network 422 and communication inter-
face 418.

US 2023/0121493 Al

[0154] The received code may be executed by processor
404 as it is received, and/or stored in storage device 410, or
other non-volatile storage for later execution.

[0155] As described above, in various embodiments cer-
tain functionality may be accessible by a user through a
web-based viewer (such as a web browser), or other suitable
software program). In such implementations, the user inter-
face may be generated by a server computing system and
transmitted to a web browser of the user (e.g., running on the
user’s computing system). Alternatively, data (e.g., user
interface data) necessary for generating the user interface
may be provided by the server computing system to the
browser, where the user interface may be generated (e.g., the
user interface data may be executed by a browser accessing
a web service and may be configured to render the user
interfaces based on the user interface data). The user may
then interact with the user interface through the web-
browser. User interfaces of certain implementations may be
accessible through one or more dedicated software applica-
tions. In certain embodiments, one or more of the computing
devices and/or systems of the disclosure may include mobile
computing devices, and user interfaces may be accessible
through such mobile computing devices (for example,
smartphones and/or tablets).

[0156] Many variations and modifications may be made to
the above-described embodiments, the elements of which
are to be understood as being among other acceptable
examples. All such modifications and variations are intended
to be included herein within the scope of this disclosure. The
foregoing description details certain embodiments. It will be
appreciated, however, that no matter how detailed the fore-
going appears in text, the systems and methods can be
practiced in many ways. As is also stated above, it should be
noted that the use of particular terminology when describing
certain features or aspects of the systems and methods
should not be taken to imply that the terminology is being
re-defined herein to be restricted to including any specific
characteristics of the features or aspects of the systems and
methods with which that terminology is associated.

[0157] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated
otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include,
certain features, elements, and/or steps. Thus, such condi-
tional language is not generally intended to imply that
features, elements and/or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment.

[0158] The term “substantially” when used in conjunction
with the term “real-time” forms a phrase that will be readily
understood by a person of ordinary skill in the art. For
example, it is readily understood that such language will
include speeds in which no or little delay or waiting is
discernible, or where such delay is sufficiently short so as not
to be disruptive, irritating, or otherwise vexing to a user.
[0159] Conjunctive language such as the phrase “at least
one of X, Y, and Z,” or “at least one of X, Y, or Z,” unless
specifically stated otherwise, is to be understood with the
context as used in general to convey that an item, term, etc.
may be either X, Y, or Z, or a combination thereof. For

Apr. 20, 2023

example, the term “or” is used in its inclusive sense (and not
in its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list. Thus, such conjunctive
language is not generally intended to imply that certain
embodiments require at least one of X, at least one of Y, and
at least one of Z to each be present.

[0160] The term “a” as used herein should be given an
inclusive rather than exclusive interpretation. For example,
unless specifically noted, the term “a” should not be under-
stood to mean “exactly one” or “one and only one”; instead,
the term “a” means “one or more” or “at least one,” whether
used in the claims or elsewhere in the specification and
regardless of uses of quantifiers such as “at least one,” “one
or more,” or “a plurality” elsewhere in the claims or speci-
fication.

[0161] The term “comprising” as used herein should be
given an inclusive rather than exclusive interpretation. For
example, a general purpose computer comprising one or
more processors should not be interpreted as excluding other
computer components, and may possibly include such com-
ponents as memory, input/output devices, and/or network
interfaces, among others.

[0162] While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, it may be understood that various
omissions, substitutions, and changes in the form and details
of the devices or processes illustrated may be made without
departing from the spirit of the disclosure. As may be
recognized, certain embodiments of the inventions described
herein may be embodied within a form that does not provide
all of the features and benefits set forth herein, as some
features may be used or practiced separately from others.
The scope of certain inventions disclosed herein is indicated
by the appended claims rather than by the foregoing descrip-
tion. All changes which come within the meaning and range
of'equivalency of the claims are to be embraced within their
scope.

What is claimed is:

1. A system comprising:

one or more non-transitory computer readable storage

mediums having program instructions embodied there-
with; and

one or more processors configured to execute the program

instructions to cause the system to:
receive one or more edits to be made to a first dataset;
append the one or more edits to a second dataset; and
in response to receipt of a query of the first dataset:
collapse the second dataset based on one or more
resolution rules;
consolidate the collapsed second dataset with the
first dataset; and
execute the query on the consolidated dataset.

2. The system of claim 1, wherein consolidating the
collapsed second dataset with the first dataset includes
joining the collapsed second dataset with the first dataset.

3. The system of claim 1, wherein consolidating the
collapsed second dataset with the first dataset includes
combining the collapsed second dataset with the first data-
set.

4. The system of claim 1, wherein consolidating the
collapsed second dataset with the first dataset includes
merging the collapsed second dataset with the first dataset.

US 2023/0121493 Al

5. The system of claim 1, wherein the one or more
resolution rules specify that, for any data item, a most-recent
edit for that data item is to be kept in the second dataset.

6. The system of claim 1, wherein collapsing the second
dataset includes determining a most-recent edit associated
with each row in the second dataset.

7. The system of claim 1, wherein collapsing the second
dataset includes de-duplicating data of the second dataset,
removing one or more rows of the second dataset, removing
one or more columns of the second dataset, or sorting data
of the second dataset.

8. The system of claim 1, wherein the one or more
processors are configured to execute the program instruc-
tions to further cause the system to:

receive one or more additional edits to be made to the first

dataset;

temporarily store the one or more additional edits in a

buffer; and

in response to receipt of a second query of the first dataset:

join or combine the buffer to the second dataset to form
a joined or combined second dataset;

collapse the joined or combined second dataset based
on one or more second resolution rules;

consolidate the collapsed joined or combined second
dataset with the first dataset to form a second con-
solidated dataset;

execute the second query on the second consolidated
dataset; and

return a result of the second query.

9. The system of claim 1, wherein the one or more edits
to be made to the first dataset are provided by a user via a
user interface.

10. The system of claim 1, wherein the one or more
processors are configured to execute the program instruc-
tions to further cause the system to:

store the one or more edits in a buffer as buffer data; and

dump at least a portion of the buffer data to the second

dataset.

11. The system of claim 1, wherein the one or more
processors are configured to execute the program instruc-
tions to further cause the system to:

return a result of the query executed on the consolidated

dataset.

12. A computer-implemented method comprising:

receiving one or more edits to be made to a first dataset;

appending the one or more edits to a second dataset; and
in response to receipt of a query of the first dataset:
collapsing the second dataset based on one or more
resolution rules;
consolidating the collapsed second dataset with the first
dataset; and
executing the query on the consolidated dataset.

Apr. 20, 2023

13. The computer-implemented method of claim 12,
wherein consolidating the collapsed second dataset with the
first dataset includes joining the collapsed second dataset
with the first dataset.

14. The computer-implemented method of claim 12,
wherein consolidating the collapsed second dataset with the
first dataset includes combining the collapsed second dataset
with the first dataset.

15. The computer-implemented method of claim 12,
wherein consolidating the collapsed second dataset with the
first dataset includes merging the collapsed second dataset
with the first dataset.

16. The computer-implemented method of claim 12, fur-
ther comprising:

receiving one or more additional edits to be made to the

first dataset;

temporarily storing the one or more additional edits in a

buffer; and

in response to receipt of a second query of the first dataset:

joining or combining the buffer to the second dataset to
form a joined or combined second dataset;

collapsing the joined or combined second dataset based
on one or more second resolution rules;

consolidating the collapsed joined or combined second
dataset with the first dataset to form a second con-
solidated dataset;

executing the second query on the second consolidated
dataset; and

returning a result of the second query.

17. Non-transitory computer-readable media including
computer-executable instructions that, when executed by a
computing system, cause the computing system to perform
operations comprising:

receiving one or more edits to be made to a first dataset;

appending the one or more edits to a second dataset; and

in response to receipt of a query of the first dataset:
collapsing the second dataset based on one or more
resolution rules;
consolidating the collapsed second dataset with the first
dataset; and
executing the query on the consolidated dataset.

18. The non-transitory computer-readable media of claim
17, wherein the one or more resolution rules specity that, for
any data item, a most-recent edit for that data item is to be
kept in the second dataset.

19. The non-transitory computer-readable media of claim
17, wherein collapsing the second dataset includes deter-
mining a most-recent edit associated with each row in the
second dataset.

20. The non-transitory computer-readable media of claim
17, wherein collapsing the second dataset includes de-
duplicating data of the second dataset, removing one or more
rows of the second dataset, removing one or more columns
of the second dataset, or sorting data of the second dataset.

#* #* #* #* #*

