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ABSTRACT

Erasure encoding storage, a storage technique which encodes parity blocks from file blocks in

order to allow reconstruction of missing or corrupt blocks, is becoming a popular distributed

storage method that reduces storage overhead while maintaining reliability. In order for

erasure codes to perform effectively as a distributed storage mechanism, node failures and

hardware degradation must be handled appropriately. Hadoop’s current method of handling

a degraded network, known as speculative execution, relies on the fact that replicas of data

exist, but because replicas of data do not exist when using erasure encoded storage this

method must be reevaluated. Although previous work has studied both improvements to

erasure encoded storage’s performance during node failure and Hadoop’s ability to handle

a degraded network when using replication, Hadoop’s ability to handle a degraded network

when using erasure encoded storage has yet to be studied.

This paper shows that speculative execution is harmful when using erasure encoded stor-

age and a cluster’s network is degraded and presents speculative reconstruction, a mechanism

to better handle a degraded network in this situation. By utilizing the fact that erasure en-

coded storage allows a file block to be reconstructed, speculative reconstruction is able to

avoid waiting for a block to be transferred over a degraded network link by reconstructing

the block from blocks that can be read over fast network links.
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CHAPTER 1

INTRODUCTION

As data centers continue to grow, the practice of replicating data to ensure reliability and

availability becomes more costly and less practical. For example, the default replication

factor in distributed file systems such as HDFS is 3, which results in an overhead of 200%

when storing any data. Due to the high cost of replicating data, erasure encoding storage

has begun to gain popularity and become a method available in several distributed storage

systems [12, 8]. Erasure encoding data allows a storage system to guarantee the same

reliability as replication while reducing the storage overhead to less than 50%.

Another problem affecting growing data centers is the increased occurrence of degraded

hardware faults. Many distributed systems are designed to handle hardware failures but

are lacking mechanisms to deal with degraded hardware that is underperforming [11]. As

compute clusters continue to grow, the probability of a node suffering from hardware degra-

dation increases, which means the systems managing these clusters must handle the fault

appropriately or risk suffering severely degraded performance. Because cluster performance

can be seriously reduced by even a single node with degraded network hardware, erasure

encoded storage must be able to efficiently handle a degraded network in order to provide

its storage cost benefits at an acceptable level of performance.

In this study, I investigate the current state of Hadoop with erasure encoded storage and

its ability to handle a degraded network. I show that the use of speculative execution is not

the proper mechanism for handling a degraded network, due to its reliance on the availabil-

ity of data replicas. Because speculative execution does not effectively handle a degraded

network when data is erasure encoded, I propose speculative reconstruction. Speculative re-

construction takes advantage of erasure encoded storage’s ability to reconstruct data blocks

and utilizes the cluster’s fast network links to do so, which allows data to be retrieved from

HDFS without waiting for data transfers over the slow network link.
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CHAPTER 2

BACKGROUND

In this work, I will be using the Hadoop Distributed File System (HDFS) and the Hadoop

MapReduce framework in order to understand how an erasure encoded storage system han-

dles a degraded network. HDFS currently uses replication and stores massive data sets on

the order of petabytes or greater, which provides an ideal situation to optimize data stor-

age techniques in order to reduce the cost of providing reliable data storage. Hadoop [1]

is currently able to provide erasure encoded storage through a separate module known as

HDFS-RAID [6], although it will soon provide full support for erasure encoded storage [7].

2.1 HDFS

The Hadoop Distributed File System is one of the most widely used distributed file systems

due to the fact that it is able to provide data reliability and availability guarantees while

running on commodity hardware that is expected to experience failures [5]. Like other file

systems, HDFS stores files as a series of blocks, although HDFS blocks are much larger

(64 MB by default) in order to reduce seek time when reading large files. A key difference

between HDFS and standard file systems is that it ensures data reliability and availability.

In order to do this HDFS replicates each data block and distributes blocks across multiple

nodes. By default, HDFS replicates each block 3 times and places each replica on a separate

datanode to ensure it can recover from up to 2 node failures. By replicating each data block

across multiple nodes, HDFS is able to recover from block loss or corruption by reading the

data block from one of the replicas.
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Figure 2.1: Cross section of a Hadoop job showing the flow of data.

2.2 Hadoop MapReduce

Hadoop’s MapReduce framework is also widely used and integrated with HDFS. The MapRe-

duce framework allows computations to be distributed and run over the large data sets stored

in HDFS. It operates by partitioning a computation into tasks and then distributing the tasks

across the cluster to be run on individual sets of data blocks. The two main components

of a MapReduce job are the map tasks and reduce tasks, while speculative execution is the

current method for handling cases when these tasks appear to be running slowly. Hadoop

defines a job as the entire computation over a data set, a task as a computation on some

subset of input or intermediate data, and an attempt as a specific instance of task execution.

2.2.1 Map Task

The map task is a computation defined as a function of some input key/value pair with type

〈τ1 × τ2〉 that outputs zero or more intermediate key/value pairs with type 〈τ ′1 × τ
′
2〉. The

MapReduce framework then provides the individual map tasks with a subset of the input

data, the size of which is determined by the Hadoop file format used to store the data. Once

3



the map task has completed, the intermediate pairs it produces are used as input to the

reduce phase.

2.2.2 Reduce Task

A reduce task is the secondary computation run that “reduces a set of intermediate values

which share a key to a smaller set of values.” [4] The input to reduce tasks is the intermediate

key/value pairs produced by mappers grouped by key and has type 〈τ ′1 × List(τ
′
2)〉 where

List(τ ′2) is the list of all values sharing the same key. The reduce task is broken up into

three phases: shuffle, sort, and reduce. During the shuffle phase, the reduce task copies

its partition (as defined by the Partitioner) of the intermediate Key/Values from every

mapper. The sort phase runs at the same time as the shuffle phase and sorts each copied

input by key. Once all of the inputs are sorted, the reduce phase runs and reduces each each

input pair to some final output, which is usually written to HDFS.

2.2.3 Speculative Execution

An important feature of the MapReduce framework is speculative execution, which is a

mechanism designed to reduce the overall runtime of jobs by executing a backup attempt

for a specific task when that task appears to be running slowly. The general idea is that a

task is running slowly due to the resources it is using, so a backup task can be completed

more quickly by using a different set of resources. Figure 2.2 shows a map task that must

read block B where the initial map attempt is assigned to read from DataNode 1 which

has a degraded network connection, running at only 1Mb/s. Speculatively executing a

backup map attempt results in a replica of block B being read from DataNode 2 with a

properly functioning network connection, allowing the backup attempt to finish before the

original map attempt. Although not always the case [11], speculative execution has proven

to be a successful method of handling many faults and improving performance when data is
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Figure 2.2: Speculative Execution

replicated across several nodes [10].

2.3 Erasure Codes

Erasure codes provide a way to encode redundant data as a function of the input data such

that the original data is able to be recovered when data loss or corruption occurs. With

regard to HDFS this means that parity blocks are encoded from file blocks and the set of

file and parity blocks provide a means to recover the original data file when some subset of

these blocks are lost for any reason. Reed-Solomon codes are of great interest because the

storage overhead required to store the encoded parity blocks is relatively low.

2.3.1 Reed-Solomon Codes

Reed-Solomon codes have been commonly used to correct for errors in data storage and

have also been used in conjunction with HDFS. Reed-Solomon codes allow M data blocks

to be encoded into K parity blocks, where K is the number of missing or corrupted blocks

(erasures) that can occur while still allowing the original data to be recovered [15]. The

literature uses the notation RS(M,K) when referring to Reed-Solomon codes with specific
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values for M and K. This scheme conveniently allows a user of the codes to examine the

trade off between reliability needs and storage costs for their specific use case and modify

the number of parity blocks to be computed and stored.

2.3.2 HDFS-Raid

HDFS-Raid [6] is currently the system that allows HDFS to provide erasure encoded storage

through the use of the Reed-Solomon codes. HDFS-Raid is designed such that a separate

process, called the RaidNode, handles the initial encoding of data along with repairing any

corrupt or missing blocks. Any reads to corrupt or missing blocks are recomputed on the

fly by mappers using the DistributedRaidFileSystem. This allows HDFS to continue to

provide data to the application even when faced with missing or corrupt data blocks.

When using Reed-Solomon codes with HDFS, the value of M is known as the stripe

length and the value of K is known as the parity length. The stripe length is equal to the

number of file blocks that should be encoded into K parity blocks, allowing the file to recover

from up to K blocks of original or parity data to be lost or corrupted. A concrete example

is RS(5, 2), which allows a stripe’s data to be retrieved when up to 2 blocks are corrupt or

missing.

An important difference between erasure codes and replication is the block placement

policy. When blocks are replicated, as long as each block replica is placed on a different

node, HDFS is able to withstand N − 1 node failures, where N is the number of block

replicas. When using erasure codes, each stripe’s data blocks and parity blocks are unique

and must be placed on different nodes, a policy known as striping. If two blocks that are

part of the same stripe are collocated, a single node failure can cause multiple blocks to be

lost which reduces the number of failures a file is able to withstand and effectively negates

the benefits of using erasure codes. Figure 2.3 shows how striping places data and parity

blocks on distinct datanodes when one file consists of blocks A and B, another file consists
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of blocks Y and Z, and the parity blocks AB and YZ encode their respective file blocks.

Figure 2.3: Striping
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CHAPTER 3

RELATED WORK

Previous work has studied Hadoop’s performance while a cluster suffers from degraded hard-

ware along with performance improvements to erasure encoded storage. It has been shown

that distributed systems are able to reduce the latency of the slowest jobs by issuing requests

to multiple replicas of a resource and accepting the response of the fastest request. Work

has also shown degraded hardware is a serious problem and that even a single node with

degraded hardware is able to severely hinder cluster performance. New erasure codes have

been designed for use specifically with distributed erasure encoded system, which reduce

the disk and network I/O required during the reconstruction process. Scheduling tasks that

require block reconstruction first has been shown to reduce resource competition and job

runtime. Finally, distributed storage systems have been designed that utilize erasure codes

while reducing the latency of read and write operations.

3.1 Latency Tail

As distributed systems continue to grow, the variability of response times continues to in-

crease as a result of many factors including shared resources and maintenance activities [9].

This increase in variability results in an increase in the fraction of jobs that take longer

than a given time to complete, known as high tail latency. One method of handling this

variability in a distributed system is, “to issue the same request to multiple replicas and

use the results from whichever replica responds first” [9]. Hadoop’s speculative execution

mechanism is designed as a variation of this idea by executing backup attempts for tasks

that appear to be running slowly. The problem with trying to reduce tail latency in this

manner when using erasure encoded storage is that there are not multiple replicas. Instead

a new method of tail latency reduction must be designed for systems that do not have the
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option to issue the same requests to multiple replicas.

3.2 Degraded Hardware

There have been some studies on the effects of degraded hardware on cloud systems that

show how serious these types of faults can be. Do et al. [11] find that one node with

degraded hardware can bring the entire system down, even for a system that is designed

to handle such faults. Their work motivates research into how new types of failures, such

as degraded hardware, affect systems and how these failures might be remedied in system

design and implementation. My research builds on their ideas by looking at a specific system

implementation, finding a weakness to degraded resources, and offering a solution that helps

reduce the effect of such a failure.

3.3 New Erasure Codes

While erasure codes provide the means to recover corrupt or lost data, the cost of recon-

structing the lost data comes in the form of increased disk and network utilization. In order

to reduce these costs, new types of erasure codes, known as Local Reconstruction Codes

(LRC), that are designed to take advantage of data locality have been designed and ana-

lyzed for use in distributed storage systems such as Windows Azure [13] and HDFS [16].

These codes attempt to provide similar performance, in terms of time, when compared to

currently used codes like Reed-Solomon, while reducing the disk and network costs of block

reconstruction. Xorbas is an example of a system that implements LRC for use with HDFS

and is able to provide a reduction in disk I/O and network traffic by 2x at a storage cost of

14% [16]. By reducing disk and network usage, these LRCs may be able to reduce the effects

of degraded networks during the reconstruction process, but do not affect the performance of

jobs when a system is suffering from a degraded network because the reconstruction process
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is never invoked.

3.4 Job Scheduling

Other aspects of how to handle failures when using erasure encoded storage have been

investigated, specifically how to schedule degraded read tasks (tasks that must recompute

their data block) [14]. Scheduling these tasks first appears to improve overall performance

by reducing competition for resources. This scheduling only comes into effect when a data

block is missing or corrupted and not when a node is suffering from degraded hardware, so it

doesn’t solve the problem of a degraded network, which isn’t considered a failure. Although

it doesn’t solve this specific problem, Degraded-First Scheduling does appear to complement

speculative reconstruction by reducing resource competition when reconstruction tasks are

executed.

3.5 Distributed Storage

RobuSTore [18] is an example of a distributed storage system that is designed to utilize the

fact that erasure codes allow a unique means to access stored data. By storing a number of

encoded blocks across multiple servers, a read request is able to be probabilistically satisfied

by the fastest storage servers by requesting all of the file’s blocks and cancelling the slow

requests once a sufficient set of blocks have been received such that the data can be decoded.

They show this method provides higher bandwidth, when utilizing many disks and servers,

along with lower latency variance since the request only needs a subset of the total file

blocks, which can likely be read from fast servers. This systems seems to work well when

the entire file is being requested, however the MapReduce framework operates differently in

that the computation is distributed and each mapper only needs a portion of the input file.

RobuSTore would likely perform poorly in this setting because in order for each mapper to
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retrieve its subset of the input file it would need to acquire enough file blocks to recover the

entire file, introducing a huge overhead compared to that of reading a single decoded block.

In order for a system like this to work, there needs to be more fine grained control over how

files are able to be read, specifically how to efficiently retrieve file blocks, as is required by

MapReduce.

3.6 Discussion

While these works have provided solutions, improvements, and insights into the handling of

degraded hardware and the performance of Hadoop and erasure encoded storage, they have

not provided a mechanism or system that allows Hadoop to effectively handle a degraded

network when using erasure encoded storage. My work shows that Hadoop with erasure

encoded storage does not gracefully handle a degraded network and proposes a new degraded

network handling mechanism to supplement the previous work done to improve performance

and reduce latency of distributed erasure encoded storage systems.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Setup

The experiments were run using Hadoop 0.23.11 [2] for both HDFS and MapReduce along

with HDFS-Raid 0.22.0 [6]. These were setup on an Emulab [3] cluster with 9 nodes: 1 node

acting as the manager, 4 as NodeManagers, and 4 as DataNodes. The reason for running the

NodeManagers and DataNodes on separate machines is to ensure that reading data from a

DataNode is the only operation that occurs over the degraded network connection along with

ensuring that no map or reduce tasks are executed on the node with the degraded network

connection. All tests were run on Emulab pc3000 machines, which are Dell PowerEdge 2850s

with a single 3GHz processor, 2GB of RAM, and 2 10,000 RPM 146GB SCSI disks. Each

node was configured to have one of the 146GB disks mounted as storage for HDFS. HDFS

was configured to use the default block size of 64MB.

4.2 Test Methods

HDFS-Raid was run with (5,2) Reed-Solomon enabled and a 5 block (∼300MB) file was gen-

erated that was erasure encoded with 2 parity blocks. The MapReduce job used is a modified

version of a SWIM job [19]. A SWIM job is a MapReduce job defined by WorkGen.java and

consists of a mapper and reducer, each of which produce a modifiable ratio of output pairs

to input pairs. Because I am only interested in the read performance of HDFS, the ratio

used for both the map and reduce tasks is 0. This means that the job simply reads each

input Key/Value pair from the file and does nothing with it.

The FileFormat used by the SWIM job is the SequenceFileFormat. This format splits

the job input based on block size so that the number of maps is equal to the number of blocks

in the file. Because of this splitting technique, one map task will be assigned to the block
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located on the node with a degraded network making the effect of the degraded network

obvious in the performance of that task.

Simulating a degraded network was done by using Emulab’s own network simulation

software. This software allows the bandwidth of a given node’s network connection to be

dynamically modified. This allowed for network links with bandwidths from 10Mb/s to

1Mb/s to be simulated.

After the input was generated using the HDFSWrite class included with SWIM, one of the

four datanodes containing only one data block had its network connection set to the desired

bandwidth. The job was then run and the job, task, and attempt data were recorded by

Hadoop and collected using the HistoryServer Rest API.

4.3 Results

Hadoop’s HistoryServer collects many statistics about an individual job’s execution so all

necessary data was collected using a Python script that scraped data using the History-

Server’s Rest API. The most relevant statistic recorded was the start and end time of each

attempt which was plotted using swimlane plots [17]. These plots show the individual run-

times of each attempt, relative start and end times, and any backup attempts that were

executed for each task.

After collecting and plotting the data, the runtime of each individual task attempt that

the MapReduce framework made was analyzed. In the swimlane plots (Figures 4.1, 4.2,

4.3, 4.4) for jobs that were run without speculative execution, we can clearly see one map

attempt that takes far longer than the others indicating that it is the one reading over

the slow network. This behavior meets expectations since a map task that is assigned to

read from a slow datanode will not fail but rather wait for the read operation to complete

regardless of the rate.

The swimlane plots depicting the jobs that were run with speculative execution enabled
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show much worse performance than their non speculative counterparts. We see that when

a backup attempt is executed in an effort to speed up the slow map task, the task actually

takes longer to complete. Because the file was erasure encoded, the original attempt and

secondary attempt are forced to read from the same datanode and thus share the datanode’s

slow network connection, as shown in Figure 4.5. In this case, the original map attempt

still tends to finish first, since it has already partially completed its read before the backup

attempt starts, but sharing the slow link causes the task to take twice as long to complete

relative to the same job run without any speculative execution.
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Figure 4.1: SWIM job run with one node’s bandwidth set to 10Mb/s
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Figure 4.2: SWIM job run with one node’s bandwidth set to 5Mb/s
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Figure 4.3: SWIM job run with one node’s bandwidth set to 2.5Mb/s
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Figure 4.4: SWIM job run with one node’s bandwidth set to 1Mb/s
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Figure 4.5: Speculative execution when data is erasure encoded causes the slow link to be
shared, which results in further performance degradation.
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CHAPTER 5

SPECULATIVE RECONSTRUCTION

I have shown that speculative execution does not work as intended when data is erasure

encoded because the speculative attempt competes with the original attempt for network

resources over an already degraded connection. This not only means that speculative exe-

cution should not be used when data is erasure encoded, but also that a new mechanism

must be designed if erasure encoded storage is going to be able to perform acceptably when

a degraded network occurs. Speculative reconstruction is a mechanism designed to handle

degraded networks in an effective manner when using erasure encoded storage.

The idea behind speculative reconstruction is that at some point it becomes faster to

read the rest of data stripe and reconstruct a data block than it is to read a block over

a slow network connection. Speculative reconstruction is similar to speculative execution

in that a backup task is executed in an attempt to reduce the overall runtime of the job,

although instead of attempting to read the same data block, the backup task recomputes the

data block using the rest of the stripe’s blocks. As a method of fault recovery, speculative

reconstruction does not rely on the assumption that there are multiple replicas of each data

block, but rather on the ability to retrieve a block’s data without ever interacting with the

node that the block is stored on.

When a datanode’s network link is degraded and data is erasure encoded, a map task with

its input stored on that datanode is forced to read the block over the degraded connection.

Figure 5.1 illustrates this scenario and shows the first map task attempting to read block

B over a degraded network connection. Once the original map attempt is determined to be

running slowly, the speculative attempt can be executed and begin reading the data blocks

in block B’s stripe, block E and parity block BE in this case. Because the rest of the stripe’s

blocks are stored on nodes with properly functioning network connections, the speculative

attempt is able to quickly retrieve the stripe’s blocks, reconstruct block B, and complete the
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Figure 5.1: A speculative reconstruction attempt reads the remaining file blocks and parity
blocks and reconstructs the original data block for processing.

map task without ever accessing block B or using the degraded network connection.

5.1 Analytical Model

In order to show that speculative reconstruction is a viable method of handling a degraded

network, I first develop an analytical model that compares the cost of block reconstruction

with the cost of retrieving a block over a degraded connection. This model is intentionally

general and assumes things like constant and known network bandwidths. These assumption

are made because the purpose of this model is not to compute exact values for the cost of

reconstruction or slow reads, but to estimate the severity of network degradation that must

occur in order for speculative reconstruction to be considered as an effective alternative to

reading the block. The following definitions will be used when defining the model:

Block Size size of a block in HDFS

Reconstruct Time time required to reconstruct a block from M other blocks in its stripe

Expected Bandwidth minimum available bandwidth between the compute node and any

datanode storing a block in the stripe excluding the original block

21



Slow Bandwidth available bandwidth between the compute node and the datanode storing

the original block

For speculative reconstruction to perform better than reading over a slow network con-

nection, the cost of reading M other blocks plus the cost of reconstruction must be less than

the cost of reading the block over the slow connection:

M × block size

expected bandwidth
+ recompute time <

block size

slow bandwidth

but since each of the blocks are able to be read in parallel we have:

block size

expected bandwidth
+ recompute time <

block size

slow bandwidth

If we define R as the ratio of expected bandwidth to slow bandwidth such that:

expected bandwidth = R× slow bandwidth

we can define the relationship between reconstruction time and time taken to read a slow

block:

block size

expected bandwidth
+ reconstruct time <

block size

slow bandwidth

reconstruct time <
block size

slow bandwidth
− block size

R× slow bandwidth

reconstruct time <
(R− 1)× block size

R× slow bandwidth

reconstruct time <
R− 1

R
× slow block read time

where ‘slow block read time’ is equal to block size
slow bandwidth . Reconstruct time is left as an

imprecise value because the actual time taken to reconstruct a block depends greatly on

the erasure code implementation and hardware being used. This model gives us a simple
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way to determine how degraded a network connection must be relative to the rest of the

cluster’s network in order for block reconstruction to outperform the block read.

It is worth mentioning that this model can be made more general by defining it in terms

of block retrieval time rather than in terms of network bandwidths. We can redefine R such

that:

expected retrieval time = R× slow retrieval time

where retrieval times represent the time taken for a compute node to access a data block.

The general form of the model then becomes:

reconstruct time <
R− 1

R
× slow retrieval time

This redefinition then allows the model to be applied when determining if reconstruction is

effective not only when analyzing degraded networks, but also things such as degraded disks

or resource competition that results in slow retrieval times.

5.2 Preliminary Tests

Speculative execution is not currently implemented, so in an attempt to see what type of

performance can be expected when reconstructing a data block, the same test described

previously was run, except rather than slowing the bandwidth of a particular node the

datanode process of a node was killed. Killing the datanode process simulates a missing

block and triggers the reconstruction process. By triggering the reconstruction process we

are able to get an idea of the cost of block reconstruction. The test was run with both

RS(5, 2), as in the previous tests, along with RS(6, 3) where 9 nodes were set up to run as

both nodemanagers and datanodes.
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Figure 5.2: SWIM job run with one killed datanode process forcing block reconstruction.
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Figure 5.3: The Sequence File Format with one record overlapping the boundary between
two data blocks.

5.3 Results

5.3.1 Redundant Reconstruction

The most notable artifact seen in the swimlane plot (Figure 5.2) is that two of the map tasks

took longer to complete in each job, indicating that they were both forced to recompute a

block. This is interesting because only one block was not accessible and each map task’s

input is an individual block. The reason this occurred is because the SequenceFileFormat

is used to store the input file in HDFS and it stores records which are not necessarily aligned

with the block boundaries that HDFS recognizes. This means that the input block a mapper

is assigned may not contain the entire last record, resulting in the mapper having to read

the remainder of the record from another block.

An example of the boundary mismatch between records and blocks is shown in Figure

5.3, where record 2 overlaps two data blocks. In this scenario, if data block 2 is missing or

corrupt, not only does the mapper with block 2 as input have to reconstruct the block but

the mapper with block 1 as input must also recompute block 2 in order to read the remainder

of record 2, which explains the 2 long running map tasks. The second slow map task is not

seen in the tests with a degraded network because the mapper reads the little bit of data

remaining in the final record over the slow link, which takes a relatively insignificant amount

of time due to the small amount of data being read.

The fact that a single data block may contain input to more than one map task is

important to consider when deciding how to handle a degraded network because simply
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executing speculative reconstruction tasks can result in the same block being unnecessarily

reconstructed multiple times by tasks that are part of the same job. In order for specula-

tive reconstruction to be a viable mechanism for handling degraded networks it must avoid

redundant reconstruction which wastes time and cluster resources.

5.3.2 Reconstruction Performance

Even though one of the mappers was forced to recompute a block from which it only needed

part of one record, the overall runtime of the jobs for both RS(5, 2) and RS(6, 3) were

significantly faster than previous jobs that had to read a block over a degraded network

connection. The reconstruction time appears to take about 45 seconds for RS(5, 2) with the

cluster set up such that the 4 datanodes ran separately from the 4 nodemanagers. When

RS(6, 3) was used and 9 nodes running as both datanodes and nodemanagers, which is the

standard way to setup a Hadoop cluster, reconstruction time took around 60 seconds. These

reconstruction times are very promising and show that when using erasure encoded storage

any data block can be retrieved at least as quickly as the time required to retrieve any M

blocks from the same stripe plus the potentially small amount of time taken to reconstruct

the block.

Having collected values for block reconstruct time, the model previously discussed can

be applied in order to determine the factor R by which a degraded network link must be

under performing such that a job can benefit from speculative reconstruction. 1.6MB/s is

used as the expected link bandwidth because the average read time of a 64MB block is 40

seconds when using RS(5, 2). This is significantly lower than the full network bandwidth of

1000Mb/s, although the reasons for the low bandwidth utilization are not important for this

analysis.
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45s <
(R− 1)64Mb

R× slow link bandwidth

45s× expected link bandwidth < R× 64MB − 64MB

45s× 1.6MB/s < R× 64MB − 64MB

2.125 < R

This shows that it may be beneficial to speculatively reconstruct the block when the

expected network bandwidth is 2.125x greater than a degraded network link, or when the

slow network link has a bandwidth of 0.75 MB/s (6 Mb/s). Figure 5.4 compares the previous

tests with the reconstruction test and shows that this result is supported by the 5Mb/s

link test which took 125 seconds to execute while the reconstruction test only took 100

seconds. These two times aren’t as close as expected, but that’s likely because although the

datanode in the test had a 5Mb/s link, it did not have sole control of that link and other

network communications further reduced the available bandwidth resulting in an increased

job runtime.

Figure 5.4: Speculative, Nonspeculative, and Reconstruct Job Runtimes
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5.4 Drawbacks

As with speculative execution, determining when speculative reconstruction is the right

choice depends on many factors that are constantly changing. The model used to compare

the cost of reconstruction and the cost of block reads gives only a general idea of when recon-

struction is a viable option and doesn’t consider variations in network bandwidth or block

reconstruction time that result from the many jobs running on the cluster. In practice, it is

likely that determining accurate network bandwidths is too difficult and that the best way

to determine when to speculatively reconstruct a block is similar to speculative execution’s

current method, which executes a backup attempt when a map task is running significantly

slower than the job’s other maps tasks.

The discussion thus far has also ignored the cost of block reconstruction in terms of

cluster resources. Speculative reconstruction presents a trade off between block retrieval

time and disk, network, and compute resources. This trade off must be carefully analyzed in

order to prevent wasteful use of resources and to prevent further performance degradation

through over utilization of cluster resources.
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CHAPTER 6

FUTURE WORK

Although speculative reconstruction appears to be a viable option for dealing with a degraded

network when using erasure encoded storage, it has not yet been implemented. Implement-

ing and testing speculative reconstruction must be done in order to verify that it does indeed

perform as expected. Once verified, there are other faults that can occur which speculative

reconstruction may or may not be able to handle. A common occurrence in clusters run-

ning on commodity hardware is degraded disks that begin to underperform in a manner

similar to that of the networks studied here. Speculative reconstruction may provide the

answer to dealing with degraded disks as well, although this has yet to be shown. Another

situation is competition for cluster resources when many jobs run simultaneously. In sce-

narios when this competition results in slow block retrieval, speculative reconstruction may

again provide a boost in performance although this may not always be the case. The large

amount of network, disk, and compute resources required to reconstruct a block may result

in speculative reconstruction further degrading performance. The trade off between resource

utilization and job latency must be analyzed further in order to determine the scenarios in

which speculative reconstruction is the best option and when the cost of resources is too

great to provide a benefit.
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CHAPTER 7

CONCLUSION

The test results show that speculative execution is not the correct solution to handling

a degraded network when using erasure encoded HDFS. By executing backup attempts,

the degraded network connection becomes more saturated resulting in an even greater job

runtime than if the backup attempt had not been executed. The detrimental performance of

speculative execution in this scenario requires that a new mechanism be designed to handle

a degraded network when using erasure encoded storage.

Understanding the properties of an erasure encoded storage system allows us to make

new assumptions and design new mechanisms that better handle all types of faults in the

system, included degraded network connections. Speculative execution utilizes the fact that

erasure encoded storage allows the data stored in a data block to be retrieved through block

reconstruction and allows erasure encoded storage to gracefully handle a degraded network.

By continuing to develop these types of mechanisms, distributed erasure encoded storage

systems continue to become a more viable solution to reliably storing data at a fraction of

the cost of replication.

30



APPENDIX A

PROBLEMS

The following describes some of the problems experienced when testing using Hadoop, HDFS-

Raid, and the SWIM workload.

A.1 Problems with SWIM workload

Figure A.1: Running SWIM workload shows no decreased performance when using erasure
encoded storage and speculative execution

The SWIM workload simulates the workload found on Facebook’s Hadoop clusters. It is

expected that the job runtime when using erasure encoded storage and speculative execution

is longer than that of jobs using replication and speculative execution. What we see in A.1

is that this is not the case and both storage methods seems to perform equally. This is the

result of the SWIM jobs operating on input data that is small and requires only a few maps

tasks. Because of the small number of map tasks, speculative attempts are never actually
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made. This means that regardless of the storage method, a task assigned to read a block over

a slow network link will finish reading from that block without being preempted by a faster

task or slowed down by a backup task reading over the same link. In order to get results

that show how speculative execution affects performance when using replication and erasure

codes, larger input data sets must be used that require enough maps tasks for speculative

tasks to be launched.

A.2 Problems with HDFS-Raid

HDFS-Raid [6] provides a block placement policy called BlockPlacementPolicyRaid which

tries to avoid co-located stripe blocks by placing each stripe block on a distinct datanode.

I was unable to get this working due to incompatibilities between HDFS-Raid 0.22.0 and

Hadoop 0.23.11. Instead, the default placement policy was used and a node containing only

one file block was chosen to have its network slowed during testing.
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